PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A meshless method for non-linear Poisson problems with high gradients

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A meshless method for the solution of linear and non-linear Poisson-type problems involving high gradients is presented. The proposed method is based on collocation with 3rd order polynomial radial basis function coupled with the fundamental solution. The linear problem is solved by satisfying the boundary conditions and the governing differential equations over selected points over the boundary and inside the domain, respectively. In the case of the non-linear case, the resulted equations are highly non-linear and therefore, they are solved using an incremental-iterative procedure. The accuracy and efficiency of the method is verified through several numerical examples.
Rocznik
Strony
367--377
Opis fizyczny
Bibliogr. 11 poz., wykr.
Twórcy
  • King Fahd University of Petroleum and Minerals, Civil Engineering Depatment, Dhahran 31261, Saudi Arabia
Bibliografia
  • [l] R.A. Gingold, J.J. Monaghan. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices Roy. Astron, Soc., 181, 1977.
  • [2] Y.T. Gu, G.R. Liu. A radial basis boundary point interpolation method for stress analysis of solids. Structural Engineering and Mechanics. An International Journal, 15: 535-550, 2003.
  • [3] R.L. Hardy. Multiquadric equations of topography and other irregular surfaces. Geophysical Research, 176: 1905-1915, 1971.
  • [4] E.J. Kansa. Multiquaclrics-a scattered data approximation scheme with applications to computational fluid dynamics. Part I surface approximations and partial derivative estimates. Computers and Mathematics with. Applications, 19(8/9):127-145, 1990.
  • [5] E.J. Kansa. Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics. Part II solutions to parabolic, hyperbolic and elliptic partial differential equations. Computers and Mathematics with Applications, 19(8/9): 147-161, 1990.].
  • [6] G.R. Liu. Mesh Free Methods: Moving Beyond the Finite Element, Method. CRC Press, Boca Raton, USA, 2002.
  • [7] W.K. Liu et al. Overview and applications of the reproducing kernel particle methods. Arch. Comput. Methods Engrg.: State Art Rev., 3: 3-80, 1996.
  • [8] Y. Lu, T. Belytschko, L. Gu. A new implementation of the element-free Galerkin method. Comput. Methods Appl. Mech. Engrg., 113: 397-414, 1994.
  • [9] D. Nardini, C. Brebbia. A new approach to free vibration analysis using boundary elements. Boundary Element Methods in Engineering. Computational Mechanics Publications, Southampton, 1982.
  • [10] B. Nayroles, G. Touzot, P. Villon. Generalizing the finite element method: Diffuse approximation and diffuse elements. Comput. Mech., 10: 307-318, 1992.
  • [11] E. Onate; S.R. Idelsohn. A mesh-free finite point method for advective-diffusive transport and fluid flow problems. Comput. Mech., 21: 283-292, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0025-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.