PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evolutionary shape optimization in fracture problems

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim to the paper is to optimize 2-dimensional elastic structures subjected to cyclic load. The loading can result in crack forming, so the aim of the optimization is to reduce the possibility of crack growth. The number of loading cycles necessary to crack growth is maximized. To solve the optimization task the evolutionary algorithm is used. The boundary element method is applied to solve the crack problem. In order to reduce the number of design variables the parametrical NURSB curves are used to model the geometry of parts of the structural element boundary.
Rocznik
Strony
111--121
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • Silesian University of Technology [Politechnika Śląska], Department for Strength of Materials and Computational Mechanics, Konarskiego 18a, 44-100 Gliwice
Bibliografia
  • [1] J. Arabas. Lectures on Evolutionary Algorithms (in Polish). WNT, Warszawa, 2001.
  • [2] CA. Brebbia, J. Dominiguez. Boundary Elements. An Introductory Course, Computational Mechanics Publications, Southampton Boston, 1989.
  • [3] T. Burczyński, W.Beluch. The identification of cracks using boundary elements and evolutionary algorithms. Engineering Analysis with Boundary Elements, 25, 2001.
  • [4] T. Burczyński, W. Kuś. Distributed evolutionary algorithms in shape optimization of nonlinear structures. Lectures Notes on Computer Science 2328, Springer, 477-484, 2002.
  • [5] E. Cantu-Paz. A Survey of Parallel Genetic Algorithms, Calculateurs Paralleles, Reseaux et Systems Repartis, 10(2): 141-171, Paris, 1998.
  • [6] T.A. Cruse. Boundary Element Analysis in Computational Picture Mechanics. Mechanics: Computational Mechanics. Kluwer Academic Publishers, 1988.
  • [7] L. Gani, S.D. Rajan. Use of fracture mechanics and shape optimization for component design. AIAA Journal, 37: 255-260, 1999.
  • [8] E. Majchrzak, B. Mochnacki. Numerical methods. Theoretical basics, practical aspects and algorithms (in Polish). Pub. of the Silesian University of Technology, Gliwice, 2004.
  • [9] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolutionary Programs, Springer-Verlag, Al Series, New York, 1992.
  • [10] A Neimitz. Fracture Mechanics (in Polish). Polish Scientific Publishers PWN, Warszawa, 1998.
  • [11] L. Piegl, W. Tiller. The NURBS book. Springer Verlag, 1995.
  • [12] A. Portela, M.H. Aliabadi. The dual boundary element method: effective implementation for crack problems, International Journal of Fracture, 33: 1269-1287, 1992
  • [13] A. Portela, M.H. Aliabadi. Crack growth Analysis Using Boundary Elements, Computational Mechanics Pub., Southampton UK and Boston USA, 1993.
  • [14] J. Samuelson, D. Holm, B. Esping. Optimization of hydraulic cylinder. Int. Journal of Fatigue, 12: 493-504, 1990.
  • [15] K. Tanaka. Fatigue crack propagation from a crack inclined to the cyclic tensile axis, Eng. Fracture Mech., 6: 493-507, 1974.
  • [16] J. Vrbka, Z. Knésl. Opimized design of a high pressure compound vessel by FEM. Computers and Structures. 24: 809-812.
  • [17] B. Wilczyński, Z. Mróz. Topology and shape optimization of structural components with fracture constraints. Comp. Assisted Mech. and Engineering Sciences, 10: 239-257, 2003.
  • [18] B. Wilczyński. Shape optimization of machine elements with account of for fatigue life constrains using Mróz model. XLIII Symp. PTMTS Modelling in Mechanics, Wisła, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0019-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.