PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of heat transfer in biomechanics - a review. P. 2. Orthopaedics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper consisting of three parts is to review available results pertaining to various heat transfer problems of biomechanics. The second part covers thermal problems specific to orthopaedics. Three classes of problems are investigated: exothermal bone cement polymerisation in situ, frictional heat generation during articulation of joint implants and frictional heat generation during bone cutting and drilling. The existing results pertaining to modelling and experimental measurements are reviewed. Thermal damage criterion is discussed and various possible means of minimising injuries to tissues are discussed. The first class of problems studied includes also our own results.
Rocznik
Strony
3--31
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
autor
  • Polish Academy of Sciences, Institute of Fundamental Technological Research [Polska Akademia Nauk], Świętokrzyska 21, 00-049 Warsaw
autor
  • Polish Academy of Sciences, Institute of Fundamental Technological Research [Polska Akademia Nauk], Świętokrzyska 21, 00-049 Warsaw
Bibliografia
  • [1] BERGMANN G., GRAICHEN F., ROHLMANN A., In vivo measurement of temperature rise in a hip implant, 37th Annual Meeting Orthopaedic Research Society, 1991.
  • [2] BERGMANN G., GRAICHEN F., ROHLMANN A., VERDONSCHOT N., VAN L ENTHE G.H., Frictional heating of total hip implants, Part 1: Measurements in patients, J. Biomech., 2001, 34, (4), 421–428.
  • [3] BERGMANN G., GRAICHEN F., ROHLMANN A., VERDONSCHOT N., VAN L ENTHE G.H., Frictional heating of total hip implants, Part 2: Finite element study, J. Biomech., 2001, 34, (4), 429–435.
  • [4] BISHOP N.E., FERGUSON S., T EPIC S., Porosity reduction in bone cement at the cement–stem interface, J. Bone Joint Surg. [Br], 1996, 78, (3), 349–356.
  • [5] BIYIKLI S., MODEST M.F., T ARR R., Measurements of thermal properties for human femora, J. Biomed. Mat. Res., 1986, 20, 1335–1345.
  • [6] CARSLAW H.S., JAEGER J.C., Conduction of heat in solids, Oxford University Press, 1954.
  • [7] CHAMPAGNE M.J., DUMAS P., ORLOV P., BENETT M.R., HAMET P., T REMBLAY J., Protection againts necrosis by heat stress proteins in vascular smooth muscle cells: Evidence for distinct modes of cel death, Hypertension, 1999, 33, 906–913.
  • [8] CLATTENBURG R., COHEN J., CONNER S., COOK N., Thermal properties of cancellous bone, J. Biomed. Mat. Res., 1975, 9, 169–182.
  • [9] DAVIDSON J.A., GIR S., PAUL J., Heat transfer analysis of frictional heat dissipation during articulation of femoral implants, J. Biomed. Mat. Res., 1988, 22, 281–309.
  • [10] DAVIDSON J.A., SCHWARTZ G., L YNCH G., GIR S., Wear, creep, and frictional heating of femoral implant articulating surfaces and the effect on long-term performance. Part II: Friction, heating, and torque, J. Biomed. Mat. Res., 1988, 22, 69–91.
  • [11] DAVIS S.E., DOSS D.J., HUMPHREY J.D., WRIGHT N.T., Effects of heat-induced damage on the radial component of thermal diffusivity of bovine aorta, J. Biomech. Eng., 2000, 122, 283–286.
  • [12] DENNIS D.A., KOMISTEK R., NORTHCUT E.J., OCHOA J.A., R ITCHIE A., ‘In vivo’ determination of hip joint separation and the forces generated due to impact loading conditions, J. Biomech., 2001, 34, (5), 623–629.
  • [13] DOWSON D. (Editor), Advances in medical tribology. Orthopaedic implants and implant materials, Mechanical Engineering Publications Limited, London, UK, 1998.
  • [14] FLETCHER L.S., Recent developments in contact conductance heat transfer, J. Heat Transfer, 1988, 110, 1059–1070.
  • [15] FLORJAŃCZYK Z., PENCZEK S. (Editors), Polymer chemistry (in Polish), 1997.
  • [16] FYHRIE D.P., KIMURA J.H., Cancellous bone biomechanics, J. Biomech., 1999, 32, (11), 1139–1148.
  • [17] GOODMAN S.B., SCHATZKER J., SUMNER-SMITH G., FORNASIER V.L., GOFTEN N., HUNT C., The effect of polymethylmethacrylate on bone: an experimental study, Arch. Orthop. Trauma Surg., 104, 150–154.
  • [18] GRAICHEN F., BERGMANN G., ROHLMANN A., Hip endoprosthesis for in vivo measurement of joint force and temperature, J. Biomech., 1999, 32, (10), 1113–1117.
  • [19] HOLM N.J., The formation of stress by acrylic bone cements during fixation of the acetabular prosthesis, Acta Orthop. Scand., 1980, 51, 719–726.
  • [20] HUISKES R., Some fundamental aspects of human joint replacement, Acta Orth. Scan., 1980, 185, 19–108. M. STAŃCZYK, J.J. T ELEGA32
  • [21] JEFFERISS C.D., L EE A.J.C., L ING R.S.M., Thermal aspects of self-curing polymethylmethacrylate, J. Bone Joint Surg., 1975, 57-B, (4), 511–518.
  • [22] KRAUSE W.R., BRADBURY D.W., KELLY J.E., L UNCEFORD E.M., Temperature elevations in orthopaedic cutting operations, J. Biomech., 1982, 15, (4), 267–275.
  • [23] L INDER L., Reaction of bone to the acute chemical trauma of bone cement, J. Bone Joint Surg., 59-A(1), 82–87.
  • [24] L U Z., McKELLOP H., Frictional heating of bearing materials tested in a hip joint wear simulator, [in:] Advances in Medical Tribology. Orthopaedic implants and implant materials, D. Dowson (Editor), Mechanical Engineering Publications Ltd, 1998, pp. 193–200.
  • [25] MATTHEWS L.S., HIRSCH C., Temperatures measured in human cortical bone when drilling, J. Bone Joint Surg. [Am], 1972, 54, (2), 297–308.
  • [26] MAZZULLO S., PAOLINI M., VERDI C., Numerical simulation of thermal bone necrosis during cementation of femoral prostheses, J. Math. Biol., 1991, 29, (5), 475–494.
  • [27] MERCURI L.G., Measurement of the heat of reaction transmitted intracranially during polymerisation of methylmethacrylate cranial bone cement used in stabilization of the fossa component of an alloplastic temporomandibular joint prosthesis, Oral Surg. Oral Med. Oral Pathol., 74, (2), 137–142.
  • [28] MOSSER D.D., DUCHAINE J., BUORGET L., MARTIN L.H., Changes in heat shock proteins synthesis and heat sensitivity during mouse thymocyte development, Developmental Genetics, 1993, 14, 148–158.
  • [29] OHTA M., T SUTSUMI S., HYON S.H., KANG Y.B., T ANABE H., MIYOSHI Y., Residual stress measurements of ultra-high molecular weight polyethylene for artificial joints, Russian J. Biomech., 2000, 4, (2), 30–38.
  • [30] ORTT E.M., DOSS D.J., L EGALL E., WRIGHT N.T., HUMPHREY J.D., A device for evaluating the multiaxial finite strain thermomechanical behavior of elastomers and soft tissues, J. Appl. Mech., 2000, 67, 465–471.
  • [31] PRENDERGAST P.J., Biomechanical techniques for pre-clinical testing of prostheses and implants, Lecture Notes, Vol. 2, Centre of Excellence for Advanced Materials and Structures, Institute for Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 2001.
  • [32] RABEK J., Fundamentals of polymer chemistry (in Polish), Wydawnictwo Politechniki Wrocławskiej, Wrocław, 1977.
  • [33] ROJEK J., T ELEGA J.J., Contact problems with friction, adhesion and wear in orthopaedic biomechanics. Part I. General developments, J. Theor. Appl. Mech., 2001, 39, (3), 655–677.
  • [34] ROJEK J., T ELEGA J.J., STUPKIEWICZ S., Contact problems with friction, adhesion and wear in orthopaedic biomechanics. Part II. Numerical implementation and application to implanted knee joints, J. Theor. Appl. Mech., 2001, 39, (3), 679–706.
  • [35] RECKLING F.W., DILLON W.L., The bone–cement interface temperature during total joint replacement, J. Bone Joint Surg., 1977, 59-A, (1), 80–82.
  • [36] SAITO M., MARUOKA A., MORI T., SUGANO N., HINO K., Experimental studies on a new bioactive bone cement: hydroxyapatite composite resin, Biomaterials, 1994, 15, (2), 156–160.
  • [37] SCHATZKER J., HORNE J.G., SUMNER-SMITH G., SANDERSON R., MURNAGHAN J.P., Methyl- methacrylate cement: its curing temperature and effect on articular cartilage, Canadian J. Surg., 1975, 18, 172–178.
  • [38] SENAHA Y., NAKAMURA T., T AMURA J., KAWANABE K., I IDA H., YAMAMURO T., Intercalary replacement of canine femora using a new bioactive bone cement, J. Bone Joint Surg., 1996, 78, (1), 26–31.
  • [39] SHITZER A., BELLOMO S., STROSCHEIN L.A., GONZALEZ R.R., PANDOLF K.B., Simulation of a cold- stressed finger including the effects of wind, gloves and cold-induced vasodilatation, J. Biomech. Eng., 1998, 120, 389–394. Modelling of heat transfer in biomechanics. Part II. Orthopaedics 33
  • [40] SOTIN A.V., AKULICH Y.V., PODGAYETS R.M., The calculation of loads ating on the femur during normal human walking, Russian J. Biomech., 2000, 4, (1), 49–61.
  • [41] SPENCER P., COBB M.C., WIELICZKA D.M., GLAROS A.G., MORRIS P.J., Change in temperature of subjacent bone during soft tissue laser ablation, J. Periodontol., 1998, 69, (11), 1278–1282.
  • [42] STAŃCZYK M., T ELEGA J.J., Thermal problems in artificial joints: influence of bone cement polymerisation, Acta Bioengng. Biomech., 2001, 3, Supplement 2, 489–496.
  • [43] SWENSON L.W. Jr., SCHURMAN D.J., PIZIALI R., Finite element temperature analysis of a total hip replacement and measurement of PMMA curing temperatures, J. Biomed. Mat. Res., 1981, 15, (1), 83–96.
  • [44] SZWAJCZAK E., KUCABA-PIĘTAL A., T ELEGA J.J., Liquid crystalline properties of synovial fluid, Engng Trans., 2001, 49, 315–358.
  • [45] T AKEGAMI K., SANO T., WAKABAYASHI H., SONODA J., YAMAZAKI T., MORITA S., SHIBUYA T., UCHIDA A., New ferromagnetic bone cement for local hyperthermia, J. Biomed. Mat. Res., 1998, 43, (2), 210–214.
  • [46] T EPIC S., MACIROWSKI T., MANN R.W., Experimental temperature rise in human hip joint in vitro in simulated walking, J. Orthop. Res., 1985, 3, 516–520.
  • [47] T OKSVIG-L ARSEN S., FRANZEN H., RYD L., Cement interface temperature in hip arthroplasty, Acta Orth. Scan., 1991, 62, (2), 102–105.
  • [48] T OKSVIG-L ARSEN S., RYD L., L INDSTRAND A., On the problem of heat generation in bone cutting, J. Bone Joint Surg. [Br], 1991, 73, (1), 13–15.
  • [49] T OKSVIG-L ARSEN S., RYD L., L INDSTRAND A., Temperature influence in different orthopaedic saw blades, J. Arthoplasty, 1992, 7, (1), 21–24.
  • [50] VÁZQUEZ B., GINEBRA M.P., GIL F.J., PLANELL J.A., L ÓPEZ BRAVO A., SAN ROMÁN J., Radiopaque acrylic cements prepared with a new acrylic derivative of iodo-quinoline, Biomaterials, 1999, 20, 2047–2053.
  • [51] WIŚNIEWSKI S., WIŚNIEWSKI T., Heat transfer (in Polish), Wydawnictwa Naukowo-Techniczne, Warszawa, 1997.
  • [52] WU Y.L., WEINBAUM S., JIJI L.M., A new analytic technique for 3-D heat transfer from a cylinder with two or more axially interacting eccentrically embedded vessels with application to countercurrent blood flow, J. Heat Mass Transfer, 1993, 36, (4), 1073–1083.
  • [53] WYKMAN A.G.M., Acetabular cement temperature in arthroplasty. Effect of water cooling in 19 cases, Acta Orth. Scan., 1992, 63, (5), 543–544.
  • [54] YOUNG T.H., CHENG C.K., L EE Y.M., C HEN L.Y., HUANG C.H., Analysis of ultrahigh molecular weight polyethylene failure in artificial knee joints: Thermal effect on long-term performance, J. Biomed. Mat. Res., 1999, 48, (2), 159–164.
  • [55] Z HU M., WEINBAUM S., JIJI L.M., Heat exchange between unequal countercurrent vessels asymetrically embedded in a cylinder with surface convection, J. Heat Mass Transfer, 1990, 33, (10), 2275–2284.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0014-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.