PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of heat transfer in biomechanics - a review. P. 1. Soft tissues

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to review available results that pertain to various heat transfer problems of biomechanics. The present part covers the issues connected with modelling of the heat exchange in perfused tissues. The results are important for the design of hyperthermic treatment protocols, thermal injury assessment, heat Ioss rate in adverse environments, constructing whole-body or whole-Iimb models of heat transfer, etc. The division into two classes of models is proposed: continuum models and vascular models (cf. also [3]). The shortcomings of the most popular bioheat transfer equations are discussed. The effects of cryogenic temperatures on living tissues are described in the third part of the paper. The effects of cryogenic temperatures on living tissues arę described in the third part of the paper.
Rocznik
Strony
31--61
Opis fizyczny
Bibliogr. 61 poz., rys., wykr., tab.
Twórcy
autor
  • Polish Academy of Sciences, Institute of Fundamental Technological Research [Polska Akademia Nauk] , ul. Świętokrzyska 21, 00-049 Warsaw
autor
  • Polish Academy of Sciences, Institute of Fundamental Technological Research [Polska Akademia Nauk] , ul. Świętokrzyska 21, 00-049 Warsaw
Bibliografia
  • [1] BAISH J.W., Heat transport by countercurrent blood vessels in the presence of an arbitrary temperature gradient, J. Biomech. Eng., 1990, 112, 207-211.
  • [2] BAISH J.W., Formulation of a statistical model of heat transfer in perfused tissue, J. Biomech. Eng., 1994, 116,521-527.
  • [3] BAISH J.W., AYYASWAMY P.S., FOSTER K.R., Heat transport mechanisms in vascular tissues: a model comparison, J. Biomech. Eng., 1986, I 08, 324-331.
  • [4] BAISH J.W., AYYASWAMY P.S., FOSTER K.R., Small-scale temperature fluctuations in perfused tissue during local hyperthermia, J. Biomech. Eng., 1986, I 08, 246-250,.
  • [5] BARACOS V.E., WILSON E.J., GOLDBERG A.L., Effects of temperature on protein turnover in isolated rat skelatal muscle, Am. J. Physiology, 246(1), CI25-CI30.
  • [6] BHOWMICK S., SWANLUND D.J., BISCHOF J.C., Supraphysiological thermal in jury in Dunning AT-1 prostrate tumor cells, J. Biomech. Eng., 2000, 122,51-59.
  • [7] BOWMAN H.F., The bio-heat transfer equation and discrimination of thermally significant vessels, Annals New York Acad. Sci., 1980, 335, 155-160.
  • [8] BRINCK H., WERNER J., Estimation of the thermal effect of blood flow in a branching countercurrent network using a three-dimensional vascular model, J. Biomech. Eng., 1994, 116, 324-330.
  • [9] CHARNY C.K., WEINBAUM S., LEVIN R.L., An evaluation of the Weinbaum-Jiji bioheat equation for normal and hyperthermic conditions, J. Biomech. Eng., 1990, 112, 80-87.
  • [10] CHATO J., Heat transfer to blood vessels, J. Biomech. Eng., 1980, I 02, II 0-118.
  • [11] CHEN M.M., HOLMES K.R., Microvascular contributions in tissue heat transfer, Annals New York Acad. Sci., 1980,335, 137-154.
  • [12] CHEN S.S., WRIGHT N.T., HUMPHREY J.D., Heat-induced changes in the mechanics of a collagenous tissue: Isothermal, free shrinkage, J. Biomech. Eng., 1997, 119, 372-378.
  • [13] CHEN S.S., WRIGHT N.T., HUMPHREY J.D., Heat-induced changes in the mechanics of a collagenous tissue: Isothermal, isotonic shrinkage, J. Biomech. Eng., 1998, 120, 382-388.
  • [14] CHEN S.S., WRIGHT N.T., HUMPHREY J.D., Phenomenological evolution equations for heat-induced shrinkage of a collagenous tissue, IEEE Trans. BME, 1998, 45, (10), 1234-1240.
  • [15] CRACIUNESCU 0.1., CLEGG S.T., Pulsatile blood flow effects on temperature distribution and heat transfer in rigid vessels, J. Biomech. Eng., 2001, 123, 500-505.
  • [16] CRAVALHO E.G., Fox L.R., KAN J.C., The application of the bioheat equation to the design of thermal protocols for local hyperthermia, Annals New York Acad. Sci., 1980, 335, 86-97.
  • [17] CREZEE J., LAGENDIJK J.J.W., Experimental verification of bioheat transfer theories: Measurement of temperature profiles around large artificial vessels in perfused tissue, Phys. Med. Biol., 1990, 35, (7), 905-923.
  • [18] CREZEE J., MOOIBROEK J., LAGENDUK J.J.W., Van LENEUVEN G.M.J., The theoretical and experimental evaluation of the heat balance in perfused tissue, Phys. Med. Biol., 1994, 39, 813-832.
  • [19] DAVIDSON J.A., GIR S., PAUL J., Heat transfer analysis of frictional heat dissipation during articulation of femoral implants, J. Biomed. Mat. Res., 1988, 22, 281-309.
  • [20] DAVIS E.D., Doss D.J., HUMPHREY J.D., WRIGHT N.T., Effects of heat-induced damage on the radial component of thermal diffusivity of bovine aorta, J. Biomech. Eng., 2000, 122, (3), 283-286.
  • [21] DILLER K.R., Modelling of bioheat transfer processes at high and low temperature, Advances in Heat Transfer, 1992, 22, 177-357.
  • [22] DURKEE J.W. Jr., ANTICH P.P., LEE C.E., Exact solutions to the multiregion time-dependent bioheat equation. I: Solution development, Phys. Med. Biol., 1990, 35, (7), 847-867.
  • [23] DURKEE J.W. Jr., ANTICH P.P., LEE C.E., Exact solutions to the multiregion time-dependent bioheat equation. JJ: Numerical evaluation of the solutions, Phys. Med. Biol., 1990, 35, (7), 869-889.
  • [24] HENLE K.J., DETHLEFSEN L.A., Time-temperature relationships for heat-induced killing of mammalian cells, Annals New York Acad. Sci., 1980, 335, 234-253.
  • [25] HENRIQUEZ F.C., MORITZ A.R., Studies of thermal injury: 1. The conduction of heat to and through skin and the temperature attained therein: A theoretical and experimental investigation, Am. J. Pathology, 1947,23,531-549.
  • [26] HENRIQUEZ F.C. Jr., Studies of thermal injury: V The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury, Arch. Pathology, 1947, 43, 489-502.
  • [27] HOFFMANN N.E., BISCHOF J.C., Cryosurgery of normal and tumor tissue in the dorsal skin flap chamber: Part I. Thermal response, J. Biomech. Eng., 2001, 123, (4), 301-309.
  • [28] JAIN R.K., Temperature distributions in normal and neoplastic tissues during normothermia and hyperthermia, Annals New York Acad. Sci., 1980, 335, 98-106.
  • [29] JUI L.M., WEINBAUM S., LEMONS D.E., Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer. Part ll: Model formulation and solution, J. Biomech. Eng., 1984, 106,331-341.
  • [30] KLINGER H.G., The description of heat transfer in biological tissue, Annals New York Acad. Sci., 1980, 335, 133-136.
  • [31] LAW H.T., PETTIGREW R.T., Heat transfer in whole-body hyperthermia, Annals New York Acad. Sci., 1980, 335, 298-310.
  • [32] LEMONS D.E., CHIEN S., CRAWSHAW L.l., WEINBAUM S., The significance of vessel size and type in vascular heat transfer, Am. J. Phys., 1987,253, R128-R135.
  • [33] LIU J., Uncertainty analysis for temperature prediction of biological bodies subject to randomly spatial heating, J. Biomech., 2001, 34, 1637-1642.
  • [34] MNCHRZAK E., JASINSKI M., Sensitivity analysis of bioheat transfer in 2D tissue domain subjected to an external heat source, Acta Bioengng. Biomech., 2001, 3, 329-336.
  • [35] MAJCHRZAK E., MOCHNACKI B., The analysis of thermal processes occurring in tissue with a tumor region using the BEM, J. Theor. Appl. Mech., 2002, 40, 101-112.
  • [36] MCHEDLISHVILI G., Blood flow in the microcirculation is a specific scientific field, Rus. J. Biomech., 2000, 4, (4), 34-35.
  • [37] PENNES H.H., Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl. Physiology, 1948, I, 93-122.
  • [38] PEREZ C.A., Clinical hyperthermia: mirage or reality? Int. J. Radiation Oncology Biol. Phys., 1984, 10, 935-937.
  • [39] PFEFER T.J., CHOI B., VARGAS G., Me NALLY K.M., WELCH A.J., Pulsed laser-induced thermal damage in whole blood, J. Biomech. Eng., 2000, 122, 196-202.
  • [40] RABIN Y., STEIF P.S., Analysis of thermal stresses around a cryosurgical probe, Cryobiology, 1996, 33, 276-290.
  • [41] RABIN Y., STEIF P S., Thermal stress modeling of the freezing of biological tissue, Advances in Heat and Mass Transfer in Biotechnology, 1999, 183-187.
  • [42] RIVOLTA B., INZOLI F., MANTERO S., SEVERINI A., Evaluation of temperature distribution during hyperthermic treatment in biliary tumors: A computational approach, J. Biomech. Eng., 1999, 121, 141-147.
  • [43] ROEMER R.B., CETAS T.C., Application of bioheat transfer simulations to hyperthermia, Cancer Res., 1984,44, 4788 s-4798 s.
  • [44] ROEMER R.B., DUTTON A.W., A generic tissue convective energy balance equation: Part I. Theory and derivation, J. Biomech. Eng., 1998, 120, 395--404.
  • [45] SAPARETO S.A., DEWEY W.C., Thermal dose determination in cancer therapy, Int. J. Radiation Oncology Biol. Phys., 1984, I 0, 787-800.
  • [46] SHITZER A., STROSCHEIN L.A., VITAL P., GONZALEZ R.R., PANDOLF K.B., Numerical analysis of an extremity in a cold environment including countercurrent arterio-venous heat exchange, J. Biomech. Eng., 1997, 119, 179-186.
  • [47] SONG J., Xu L.X., LEMONS D.E., WEINBAUM S., Enhancements in the effective thermal conductivity in rat spinotrapezius due to vasoregulation, J. Biomech. Eng., 1997, 119,461--468.
  • [48] SONG J., Xu L.X., LEMONS D.E., WEINBAUM S., Microvascular thermal equilibration in rat spinotrapezius muscle, Annals Biomed. Eng., 1999, 27, 56-66.
  • [49] SONG W.J., WEINBAUM S., JIJI L.M., LEMONS D., A combined macro and microvascular mode/for whole limb heat transfor, J. Biomech. Eng., 1988, II 0, 259-268.
  • [50] STOLWIJK J.A.J., Mathematical models of thermal regulation, Annals New York Acad. Sci., 1980, 335, 98-106.
  • [51] VALVANO J.W., NHO S., ANDERSON G.T., Analysis of the Weinbaum-Jiji model of blood flow in the canine kidney cortex for self-heated thermistors, J. Biomech. Eng., 1994, 116, 201-207.
  • [52] WEINBAUM S., JIJI L.M., A new simplified bioheat equation for the effect of blood flow on local average tissue temperature, J. Biomech. Eng., 1985, 107, 131-139.
  • [53] WEINBAUM S., JIJI L.M., LEMONS D.E., Theory and experiment for the effect of vascular microstructure on surface tissue heat transfor: Part I. Anatomical foundation and model conceptualization, J. Biomech. Eng., 1984, 106,321-330.
  • [54] WEINBAUM S., JIJI L.M., LEMONS D.E., The bleed-of! perfusion term in the Weinbaum-Jiji bioheat equation, J. Biomech. Eng., 1992, 114,539-544.
  • [55] WEINBAUM S., Xu L.X., ZHU L., EKPENE A., A new fundamental bioheat equation for muscle tissue: Part I. Blood perfusion term, J. Biomech. Eng., 1997, 119, 278-288.
  • [56] WISSLER, E.H., Comments on the new bioheat equation proposed by Weinbaum and Jiji, J. Biomech. Eng., 109, 226-233, 1987.
  • [57] WRIGHT N.T., CHEN S.S., HUMPHREY J.D., Time-temperature equivalence of heat-induced changes in cells and proteins, J. Biomech. Eng., 1998, 120, (I), 22-26.
  • [58] WULFF W., The energy conservation equation for living tissue, IEEE Trans. BME, 1974, 21, (6), 49 95.
  • [59] WULFF W., Alternatives to the bio-heat transfer equation, Annals New York Acad. Sci., 1980, 335, 151-154.
  • [60] ZHU L., LEMONS D.E., WEINBAUM S., A new approach for predicting the enhancements in the effective conductivity of perfused muscle due to hyperthermia, Annals Biomed. Eng., 1995, 22, 1-12.
  • [61] ZHU L., LEMONS D.E., WEINBAUM S., Microvascular thermal equilibration in rat cremaster muscle, Annals Biomed. Eng., 1996, 24, 109-123.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0014-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.