PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coupling of FEM and EFGM with dynamic decomposition in 2D quasi-brittle crack growth analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper three computational models for crack growth analysis in quasi-brittle materials in plane stress state are presented. These models have been worked out on the base of different methods of coupling the finite element method and the element free Galerkin method. The usefulness of the methods in crack growth analysis has been confirmed in examples.
Rocznik
Strony
293--320
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
  • Cracow University of Technology, Institute of Computer Methods in Civil Engineering, [Politechnika Krakowska], ul. Warszawska 24, 31-155 Kraków
autor
  • Cracow University of Technology, Institute of Computer Methods in Civil Engineering, [Politechnika Krakowska], ul. Warszawska 24, 31-155 Kraków
Bibliografia
  • [1] H. Askes. Advanced spatial discretisation strategies for localised failure. Mesh adaptivity and meshless methods. Dissertation, Deift University of Technology, The Netherlands, 2000.
  • [2] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing. Jut. J. Numer. Methods Eng., 45(5):601-620, 1999.
  • [3] T. Belytschko, Y. Krongauz, M. Fleming, D. Organ, and P. Krysl. Meshless methods: an overview and recent developments. Comput. Methods Appi. Mech. Eng., 139:3-47, 1996.
  • [4] T. Belytschko, D. Organ, and Y. Krongauz. A coupled finite element-free Galerkin method. Computational Mechanics, 17:186-195, 1995.
  • [5] T. Belytschko, D. Organ, and Y. Krongauz. Crack propagation by element-free Galerkin methods. Engineering Fracture Mechanis, 51(2):295-315, 1995.
  • [6] Al. Carpinteri, S. Valente, C. Ferrara, and C. Meichiorri. Is mode II fracture energy a real material property? Computers and Structures, 48(3):397-413, 1993.
  • [7] J.S. Chen, C. Pan, C.T. Wu, and WJK. Li. Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput. Methods Appl. Mech. Bug., 139:195-228, 1996.
  • [8] Cz. Cichoń and J. Jaśkowiec. Coupling generalized FC model to meshless EFG method for crack growth analysis in quasi-brittle materials. Computer Assisted Mechanics and Engineering Sciences, 8: 543-556, 2001.
  • [9] C. Armondo Duarte and J. Tinsley Oden. An hp adaptive method using clouds. Comput. Methods AppI. Mech. Eng., 139: 237-262, 1996.
  • [10] M. Fleming, A. Chu, B. Moran, and T. Belytschko. Enriched element-free Galerkin methods for crack tip fields. Int. J. Numer. Methods Eng., 40:1483-1504, 1997.
  • [11] A. Flillerborg, M. Modeer, and B. Petersson. Analysis of crack formation and growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6:773-782, 1976.
  • [12] A. Huerta and S. Fernhndez-Méndez. Enrichment and coupling of the finite element and meshless methods. Int. J. Numer. Methods Eng., 48:1615-1636, 2000.
  • [13] Jan Jaśkowiec. Integration of FEM and EFGM in two dimensional quasi-brittle crack growth analysis. Dissertation (in Polish), Cracow University of Technology, Cracow, Poland, 2003.
  • [14] B.L. Karihaloo. Fracture Mechanics and Structural Concrete. Longman, 1997.
  • [15] J. Krok and J. Orkisz. A unified approach to the adaptive meshless FDM and FEM. In: European Conference on Computational Mechanics, Cracow Poland, June 26-29, 2001.
  • [16] S. Li and W.K. Liu. Meshfree and particle method and their applications. Applied Mechanics, 55: 1-34, 2002.
  • [17] M. Melenk and I. Babuka. The partition of unity finite element method: Basic theory and applications. Comput. Methods AppI. Mccli. Eng., 139: 289-314, 1996.
  • [18] E. Riks. On the numerical solution of snapping problems in the theory of elastic stability. Report, SUDAAR 401, Dep. Aeronautics and Astronautics, Stanford Univ. Calif. USA, 1970.
  • [19] J.N. Rreddy. Applied Functional Analysis and Variational Methods in Engineering. McGraw-Hiu Book Company, 1986.
  • [20] E. Schlangen. Experimental and numerical analysis of fracture process in concrete. Dissertation, Delft University of Technology, The Netherlands, 1993.
  • [21] T. Strouboulis, I. Babuka, and K. Copps. The design and analysis of the Generalized Finite Element Method. Comput. Methods Appi. Mech. Eng., 181: 43-69, 2000.
  • [22] M. van Gils. Quasi-brittle fracture of ceramics. Dissertation, Eindhoven University of Technology, 1997.
  • [23] G.A. Wempner. Discrete approximations related to nonlinear theories of solids. list. J. Solids. Stru, 7: 1581-1599, 1971.
  • [24] T. Zhu and SN. Atluri. A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Computational Mechanics, 21: 211-222, 1998.
  • [25] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method. Butterworth-Heinemann, fifth edition, 2000
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0011-0049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.