PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of meshless element free Galerkin method in two-dimensional heat conduction problems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, meshless element free Galerkin method has been used to obtain the numerical solution of transient and steady state heat conduction problems in two-dimensional domains. The unknown function of temperature T(x) has been approximated by moving least square approximant Th(x). These approximants are constructed by using a weight function, a polynomial basis and a set of non-constant coefficients. Variational method is used to obtain the discrete equations. Essential boundary conditions are imposed by Lagrange multiplier technique. Two new weight functions namely hyperbolic and rational have been proposed. The results have been obtained for a two-dimensional model problem using different EFG weight functions and are compared with those obtained by finite element and analytical methods.
Rocznik
Strony
265--274
Opis fizyczny
Bibliogr. 29 poz., wykr., tab.
Twórcy
autor
  • Birla Institute of Technology and Science, Mechanical Engineering Group, Pilani, 333031, Rajasthan, India
autor
  • Birla Institute of Technology and Science, Mechanical Engineering Group, Pilani, 333031, Rajasthan, India
autor
  • Birla Institute of Technology and Science, Mechanical Engineering Group, Pilani, 333031, Rajasthan, India
Bibliografia
  • [1] A. Haji-Sheikh and E.M. Sparrow. The solution of heat conduction problems by probability methods. Journal of Beat Transfer, 89: 121-131, 1967.
  • [2] B. Neyroles, G. Touzot and P. Villon. Generalizing the finite element method: Diffuse approximations and diffuse elements. Computational Mechanics, 10: 307-318, 1992.
  • [3] C. Durate and J. Oden. hp-clouds - a meshless method to solve boundary-value problems. Computer Methods in Applied Mechanics in Engineering 139: 237-262, 1996.
  • [4] D.M. France. Analytical solution to steady state heat conduction problems with ir-regular shaped boundaries. Journal of Heat Transfer, 93: 449-454, 1971.
  • [5] E.M. Sparrow. Temperature distribution & heat transfer results for internally cooled, heat generating solids, Journal of Heat Transfer, 82: 389-392, 1960.
  • [6] F.P. Incropera and D.P. Dewitt. Fundamentals of Heat and Mass Transfer. John Wiley & Sons, Singapore 1990.
  • [7] G. Yagawa and T. Yamada. Free mesh method, a new meshless finite element method. Compututational Mechanics, 18: 383-386, 1996.
  • [8] H.S. Carslaw and J.C. Jaeger. Conduction of Heat in Solids. Oxford University Press, London 1959.
  • [9] I. Babuska and J.M. Melenk. The partition of unity method. International Journal for Numerical Methods in Engineering, 40: 727-758, 1997.
  • [10] J.V. Beck. Green's function solutions for transients heat conduction problems. International Journal of Heat And Mass Transfer, 27: 1235-1244, 1984.
  • [11] J.P. Holman. Heat Transfer. Mc Graw-Hill, Inc., Singapore 1989.
  • [12] J.J. Monaghan. Smoothed particle hydrodynamics. Annual Review of Astronomy & Astrophysics, 30: 543-574, 1992.
  • [13] J. Melenk and I. Babuska. The partition of unity method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139: 289-314, 1996.
  • [14] J.J. Monaghan. An introduction to SPH. Computer Physics Communications, 48: 89- 96, 1998.
  • [15] L.B. Lucy. A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 82: 1013-1024, 1997.
  • [16] M.S. Khader and M.C. Hanna. An iterarive boundary integral numerical solution for general heat conduction problems, Journal of Heat Transfer, 103: 26-32, 1981
  • [17] M.N. Ozisik. Heat Conduction, John Wiley & Sons, Singapore 1993.
  • [18] N. Sukumar, B. Moran and T. Belytschko. The natural element method in solid mechanics, International Journal for Numerical Methods in Engineering, 43: 839-887, 1998.
  • [19] N. Sukumar, B. Moran, A. Yu Semenov and V.V. Belikov. Natural neighbour Galerkin methods. International Journal for Numerical Methods in Engineering, 50: 1-27, 2001.
  • [20] R.D. Cook, D.S. Malkus and M.E. Plasha. Concepts and Applications of Finte Element Analysis. John Wiley & Sons, Singapore 1989.
  • [21] S.K. Fraley, T.J. Hoffman and P.N. Stevens. A Monte Carlo method of solving heat conduction problems. Journal of Heat Transfer, 102: 121-125, 1980.
  • [22] S.N. Atluri, and T. Zhu. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics, 22: 117-127, 1998.
  • [23] S. De and K.J. Bathe. The method of finite spheres. Computational Mechanics, 25: 329-345, 2000.
  • 24] T. Belytschko, Y.Y. Lu and L. Gu. Element free Galerkin methods. International Journal of Numerical Methods in Engineering, 37: 229-256, 1994.
  • [25] T. Belytschko, D. Organ and Y. Krongauz. A coupled finite element-element-free Galerkin method. Computa-tional Mechanics, 17: 186-195, 1995.
  • [26] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl. Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 139: 3-47,1996.
  • [27] T. Zhu, J.D. Zhang and S.N. Atluri. A meshless local boundary integral equation (LBIE) method for solving nonlinear problems. Computational Mechanics, 22: 174-186, 1998.
  • [28] W.K. Liu, S. Jun and Y.F. Zhang. Reproducing kernel particle methods. International Journal for Numerical Methods in Engineering, 20: 1081-1106, 1995.
  • [29] Y.Y. Lu, T. Belytschko, and L. Gu. A new implementation of element free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 113: 397-414, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0011-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.