PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Model for the determination of the load carrying capacity of the RC walls

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the possibility of the limit stress state approximation of the reinforced concrete wall structures by discontinuous stress fields with variable configuration. Heuristic optimization technique, simulated annealing, is applied to determine optimal configuration for approximation of load carrying capacity based on lower bound theorem of theory of plasticity. Model was tested by comparing with the results of several experimental tested beams, as well as with other numerical models.
Rocznik
Strony
247--261
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
autor
  • University of Belgrade, Department of Civil Engineering, 11000 Belgrade, Serbia
Bibliografia
  • [1] M. Aćić. A contribution to solving the problem of the limit states of reinforced concrete wall structures, Ph.D. thesis. The Faculty of Civil Engineering of the University of Belgrade, Belgrade, 1978.
  • [2] G. Dahlquist, A. Bjork. Numerical methods. Prentice-Hall, Englewood Cliffs, New Jersey, 1974.
  • [3] R. Hajdin. Computerunterstutzte Berechnung von Stahlbetonscheiben mit Spannungsfeldern, Dissertation, Institute of Structural Engineering, ETH Zurich, Zurich, 1990.
  • [4] S.G. Kirkpatrick, Jr. Gelatt. M.P. Vecchi. Optimization by simulated annealing. Science, 220 (4598): 671-680, 1983.
  • [5] M.D. Kostovos, M.N. Pavlovic. Structural concrete. Thomas Telford Publications, London, 1995.
  • [6] P. Marti. Basic tools of reinforced concrete beam design, Journal of ACI, 82 (1): 46-56, 1985.
  • [7] G.P. Mc Cormick. Nonlinear Programming: Theory, Algorithms and Applications, John Wiley, New York, 1980.
  • [8] N. Metropolis, A. Rosenbluth, A. Teller, E. Teller. Equations of state calculations by fast computing machines, Journal of Chemical Physics, 21 (5): 1087-1092, 1953.
  • [9] Z. Misković. Application of stress fields based on the theory of plasticity for determination load carrying capacity of reinforced concrete wall, Ph.D. Theses. The Faculty of Civil Engineering, University of Belgrade, 2000.
  • [10] P. Muller. Plastische Berechnung von Stahlbetonscheiben und-balken, Bericht Nr. 83. Institut für Baustatik und Konstruktion, ETH Zurich, 1985.
  • [11] M.P. Nielsen. Limit Analysis and concrete plasticity. Prentice-Hall, Inc., Englewood cliffs, New Jersey, 1984.
  • [12] G.T. Parks. An intelligent stochastic optimization routine for nuclear fuel cycle design. Nuclear Technology, 89: 233-246, 1990.
  • [13] M. Schlaich, G. Anagnostou. Stress fields for nodes of strut-and-tie models, ASCE Journal of Structural Engineering, 116 1: 13-22, 1990.
  • [14] J. Schlaich, D. Weischede. A Practical procedure for methodical fimensioning and construction in reinforced concrete - translation from German, Croatian Civil Engineers Association, Zagreb, 1987.
  • [15] W. Sundermann, P. Mutscher. Nonlinear behaviour of deep beams, Reports from the IABSE Colloquium Structural Concrete, 62: 385-390, Stuttgart , April 10-12 1991,
  • [16] R.J. Vanderbei, D.F. Shanno. An interior point algorithm for nonconvex nonlinear programming, Princeton University, School of Engineering and Applied Science, Department of Civil Engineering and Operations Research, Technical Report No. SOR 97-21, New Jersey, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0011-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.