PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unified theory of Trefftz methods and numerical implications

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Workshop on the Trefftz Method (3 ; 16-18.09. 2002 ; Exeter, England)
Języki publikacji
EN
Abstrakty
EN
In the 1st International Workshop, devoted to Trefftz Method, the author presented an indirect approach to Trefftz Method (Trefftz-Herrera Method), while in the Second one some of the basic ideas of how to integrate different approaches to Trefftz method were introduced. The present Plenary Lecture, corresponding to the 3rd International Workshop of this series, is devoted to show that Trefftz Method, when formulated in an suitable framework, is a very broad concept capable of incorporating and unifying many numerical methods for partial differential equations. In this manner, the unified theory of Trefftz Method that was announced in the second publication of this series, has been developed. It includes Direct Trefftz Methods (Trefftz-Jirousek) and Indirect Trefftz Methods (Trefftz-Herrera). At present, the unified theory is fully developed and an overview is given here, as well as a brief description of its numerical implications.
Słowa kluczowe
Rocznik
Strony
495--514
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • Instituto de Geofisica, Universidad Nacional Autonoma de Mexico (UNAM0, Apartado Postal 22-582, 14000, Mexico, D.F.
Bibliografia
  • [1] I. Herrera. Trefftz method: A general theory. Numer M eths for PDE, 16(6): 561-580, 2000.
  • [2] I. Herrera. A unified theory of domain decomposition methods. In: 14th Int. Conf. on DDM , Cocoyoc, Mex., 2002.
  • [3] I. Herrera. Trefftz-Herrera Method. GAMES, 4: 369-382, 1997.
  • [4] I. Herrera. Trefftz-Herrera domain decomposition. Advances in Engineering Software, 24: 43-56, 1995. Special Volume on Trefftz Method: 70 Years Anniversary.
  • [5] I. Herrera. On Jirousek method and its generalizations. GAMES, 8: 325-342, 2001.
  • [6] I. Herrera, R. Yates, and M. Diaz. General theory of domain decomposition: Indirect methods. Numer Meths for PDE, 18(3): 296-322, 2002.
  • [7] I. Herrera. The indirect approach to domain decomposition. In: 14th Int. Conf. on DDM, Cocoyoc, Mex., 2002. Plenary Talk.
  • [8] I. Herrera. Una teoria general de métodos de descomposición de dominio. In: E. 0nate, F. Zarate, G . Ayala, S. Botello, and M.A. Moreles, editors, Memorias del II Congreso Internacional de Métodos Numéricos en Ingeniería y Ciencias Aplicadas, pages 55-70, Guanajuato, Mex., 2002. Electronic publication (Plenary Talk).
  • [9] M. Diaz, I. Herrera, and R. Yates. Aplicación del método indirecto de colocación trefftz-herrera a problemas elipticos en 2d. In: E. 0nate, F. Zarate, G. Ayala, S. Botello, and M.A. Moreles, editors, Memorias del II Congreso Internacional de Métodos Numéricos en Ingeniería y Ciencias Aplicadas, pages 201-214, Guanajuato, Mex., 2002. Electronic publication (Plenary Talk).
  • [10] I. Herrera and Yates R. General theory of domain decomposition: Beyond schwarz methods. Numer Meths forPDE, 17(5): 495-517, 2001.
  • [11] R. Yates and I. Herrera. Parallel implementation of indirect collocation methods. In: 14'h Int. Conf. on DDM , Cocoyoc, Mex., 2002.
  • [12] Diaz M. and Herrera I. Indirect method of collocation for the biharrmonic equation. In: 14'h Int. Conf. on DDM , Cocoyoc, Mex., 2002.
  • [13] I. Herrera. Innovative discretization methodologies based on LAM. In: K. Morgan et. al., editor , Finite Elements in Fluids: New Trends and Applications, volume 2, pages 1437-1447. Pineridge Press, 1993.
  • [14] E. Trefftz. Ein gegenstück zum ritzschen verfahren. In: Proc. 2nd International Congress of Applied Mechanics, pages 131-137, Zurich.
  • [15] J. Jirousek. Basis for development of large finite elements locally satisfying all field equations. Camp. M eth. Appl . Mech. Eng., 14: 65-92, 1978.
  • [16] J. Jirousek and A.P. Zielinski. Survey of trefftz-type element formulations. Computers and Structures, 63(2): 225-242, 1997.
  • [17] J . Jirousek and A. Wróblewski. T-elements: state of the art and future trends. Archives of Computational Methods in Engineering, 3,4: 323-434, 1996.
  • [18] M.A. Celia. Eulerian-Lagrangian localized adjoint methods for contaminant transport simulations. In: Computational Methods in Water Resources X , pages 207-216. 1994.
  • [19] Oden T.J. Finite Elements of Non-linear Continua. McGraw-Hill, New York, 1972.
  • [20] I. Herrera. Unified approach to numerical methods. Part 1: Green's formulas for operators in discontinuous fields. Numer Meths for PDE, 1(1): 12-37, 1985.
  • [21] I. Herrera, L. Chargoy, and G. Alduncin. Unified approach to numerical methods. Part 3: Finite differences and ordinary differential equations. Numer Meths for PDE, 1(4): 241-258, 1985.
  • [22] I. Herrera, R.E. Ewing, M.A. Celia, and T. Russell. Eulerian-Lagrangian localized adjoint method: The theoretical framework. Numer Meths for PDE, 9(4): 431-457, 1993.
  • [23] Proceedings of 14th conferences on domain decomposition methods. International Scientific Committee for Domain Decomposition.
  • [24] R. Berlanga and I. Herrera. The Gauss theorem for domain decompositions in Sobolev spaces. Applicable Analysis , 76: 67-81, 2000.
  • [25] J.L. Lions and E. Magenes. Non-Homogeneous Boundary value Problem and Applications. Springer-Verlag, New York, 1972.
  • [26] M. Celia and I. Herrera. Solution of general differential equations using the algebraic theory approach. Numer Meths for PDE, pages 117-129, 1987.
  • [27] I. Herrera. The algebraic theory approach to ordinary differential equations: Highly accurate finite differences. Numer Meths for PDE, 3(3): 199-218, 1987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0009-0091
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.