PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A multiscale and Trefftz computational method for medium-frequency vibrations of assemblies of heterogeneous plates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Workshop on the Trefftz Method (3 ; 16-18.09. 2002 ; Exeter, England)
Języki publikacji
EN
Abstrakty
EN
A new approach called the "Variational Theory of Complex Rays'' has been developed in order to calculate the vibrations of slightly damped elastic plates in the medium-frequency range. The solution of a small system of equations, which does not result from a fine spatial discretization of the structure, leads to the evaluation of effective quantities (deformation energy, vibration amplitude, ...). Here we extend this approach, which was already validated for assemblies of homogeneous substructures, to the case of heterogeneous substructures.
Rocznik
Strony
375--383
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
autor
  • LMT Cachan (E.N.S. de Cachan / C.N.R.S. / Université Paris 6) 61, Avenue du Président Wilson, F-94235 Cachan Cedex, France
autor
  • LMT Cachan (E.N.S. de Cachan / C.N.R.S. / Université Paris 6) 61, Avenue du Président Wilson, F-94235 Cachan Cedex, France
autor
  • LMT Cachan (E.N.S. de Cachan / C.N.R.S. / Université Paris 6) 61, Avenue du Président Wilson, F-94235 Cachan Cedex, France
autor
  • LMT Cachan (E.N.S. de Cachan / C.N.R.S. / Université Paris 6) 61, Avenue du Président Wilson, F-94235 Cachan Cedex, France
Bibliografia
  • [1] R.R. Craig. Substructure methods in vibration. Journal of Vibration and Acoustics, 50th Anniversary, 117: 207-13, 1995.
  • [2] R.H. Lyon, G. Maidanik. Power flow between linearly coupled oscillators. JASA, 34(5): 623-39, 1962.
  • [3] R.H. Lyon, H. Richard, G. Richard. Statistical Energy Analysis. Butterworth-Heinemann, 1995.
  • [4] B.R. Mace. On the statistical energy analysis hypothesis of couling power proportionality and some implications of its failure. Journal of Sound and Vibration, 178(1): 95-112, 1994.
  • [5] E.H. Dowell, Y. Kubota. Asymptotic modal analysis and statistical energy of dynamical systems. J. Appl. Mech., 52: 949-57, 1985.
  • [6] I. Babuska, F. Ihlenburg, E. Paik, S. Sauter. A generalized finite element method for solving the Helmholtz equation in the two dimensions with minimal pollution. Comput. Methods Appl. Mech. Engrg., 128: 325-59, 1995.
  • [7] F. Ihlenburg, I. Babuska. Finite element solution of the Helmholtz equation with high wave number. part 2: the h-p version of the fern. SIAM J. Numer. Anal., 34(1): 315-58, 1997.
  • [8] I. Harari, K. Grosh, T.J.R. Hughes, M. Malkostra, M. Pinsky, J.R. Steward, L. Thompson. Recent developments in finite element methods for structural acoustics. Arch. of Comput. Methods Engrg., 3: 131-311, 1996.
  • [9] L.E. Buvailo, A.V. Ionov. Application of the finite elements method to the investigation of the vibroacoustical characteristics of structures at high audio frequencies. Journal of Soviet Physics Acoustics, 26 (4): 277-9, 1980.
  • [10] P.E. Barbone, J.M. Montgomery, I. Harari. Scattering by a hybrid asymptotic / finite element method. Comput. Methods Appl. Mech. Engry., 164: 141-56 , 1998.
  • [11] N.E. Wiberg, R. Bausys, P. Hager. Improved eigen frequencies and eigenmodes in free vibration analysis. In B.H.V. Topping, editor, Advances in Finite Elements Technology, pages 43-54, Saxe-Coburg, 1996. Civil Comp. Press.
  • [12] L. Demkowicz, A. Karafiat, J.I. Oden. Solution of elastic scaterring problems in linear acoustics using h-p boundary element method. Comput. Methods Appl. Mech. Engrg., 101: 251-82, 1992.
  • [13] I. Harari, S. Haham. Improved finite element method for elastic waves. Comput. Methods Appl. Mech. Engrg., 166: 143-64, 1998.
  • [14] I. Harari, T.J. R. Hughes. Galerkin least-squares finite element method for the reduced wave equation with non reflecting boundary condition in unbounded domains. Comput. Methods Appl. Mech. Engrg., pages 411-54, 1992.
  • [15] J. Greenstadt. Solution of wave propagation problems by the cell discretisation method. Comput. Methods Appl. Mech. Engrg., 174: 1-21, 1999.
  • [16] K. Grosh, P.M. Pinsky. Galerkin generalized least square finite element methods for time harmonic structural acoustics. Comput. Methods Appl. Mech. Engrg., 154: 299-318, 1998.
  • [17] K. Wu, J.H. Ginsberg. Mid frequency range acoustic radiation from slender elastic bodies using the surface variational principle. Journal of Vibrations and Acoustics, 120: 392-400, 1998.
  • [18] K. Yoon Young, K. Jeaong Hoon. Free vibration analysis of membrane using wave type base functions. JASA, 99(5): 2938-46, 1996.
  • [19] A.P. Zielinski, I. Herrera. Trefftz method: fitting boundary conditions. Int. J. Num. Methods Engrg., 24(5): 871-91, 1987.
  • [20] A.Y.T. Leung, J.K.W. Chan. Fourier p-elements for the analysis of beams and plates. Journal of Sound and Vibration, 212(1): 179-95, 1998.
  • [21] W.K. Liu, Y. Zhang, M.R. Ramirez. Multiple scale finite element methods. Int. J. Num. Methods Engrg., 32: 969-90, 1991.
  • [22] J.F. Rizzo, D.J. Shippy, M. Rezayat. A boundary integral method for radiation and scattering of elastic waves in three dimensions. Int. J. Num. Methods Engrg., 21: 115-29, 1985.
  • [23] G. Rosenhouse, J. Avrashi, O. Michael. Steady state elastodynamics using boundary spectral line strips. Engineering Computations, 15(2): 221-32, 1998.
  • [24] A.A. Oberai, P.M. Pinsky. A multiscale finite element method for the Helmholtz equation. Comput. Methods Appl. Mech. Engrg., 154: 281-98, 1998.
  • [25] J.M. Cuschieri. Vibration transmission through periodic structures using a mobility power flow approach. Journal of Sound and Vibration, 143(1): 65-74, 1990.
  • [26] A. Girard, H. Defosse. Frequency response smoothing and structural path analysis: appplication to beam trusses. Journal of Sound and Vibration, 165(1): 165-70, 1993.
  • [27] D.J. Nefske, S.H. Sung. Power flow finite element analysis of dynamic systems: basic theory and application to beams. Journal of Vibration, Acoustics, Stress and Reliability in Design, 111: 94-100, 1989. Transactions of the ASME.
  • [28] E. De Langre. Fonctions de transfert de plaques en flexion par équations integrales. Test de validation et de performance. Technical report, CEA: DMT/ 90 / 395, 1991.
  • [29] J.P.H. Morand. A modal hybridization method for the reduction of dynamic models. In P. Ladeveze and O.C. Zienkiewicz, editors, New Advances in Computational Structural Mechanics, pages 347-65. Elsevier, 1992.
  • [30] C. Soize. The local effects in the linear dynamic analysis structures in the medium frequency range. In P. Ladeveze, editor, Local effects in the analysis of structures, pages 253-78, Barking and Amsterdam, 1985. Elsevier.
  • [31] C. Soize. Reduced models in the medium frequency range for general dissipative structural-dynamics systems. Eur. J. Mech., A /Solids, 17/ 4: 657-85, 1998.
  • [32] M. Ochmann , S.N. Makarov. An iterative solver of the Helmholtz integral equation for high frequency acoustic scattering. JASA, 103(2): 742-50, 1998.
  • [33] V.D. Belov, S.A. Ryback. Applicability of the transport equation in the one-dimensional wave propagation problem. Journal of Soviet Physics Acoustics, 21(2): 110-4, 1975.
  • [34] M.N. Ichchou, A. Le Bot, L. Jezequel. Energy model of one dimensional multi-propagative systems. Journal of Sound and Vibration, 201: 535-54, 1997.
  • [35] P. Ladeveze. A new computational approach for structure vibrations in the medium frequency range. (in French) C.R. Acad. Sci. Paris, Serie Jib, 322(12): 849-56, 1996.
  • [36] P. Ladeveze, L. Arnaud. A new computational method for structural vibrations in the medium-frequency range. Computer Assisted Mechanics and Engineering Sciences, 7: 219-26, 2000.
  • [37] P. Ladeveze, L. Arnaud, P. Rouch, C. Blanze. The variational theory of complex rays for the calculation of medium-frequency vibrations. (in French) Revue Europeenne des Elements Finis, 9: 67-88, 1999.
  • [38] P. Ladeveze, L. Arnaud, P. Rouch, C. Blanze. The variational theory of complex rays for the calculation of medium-frequency vibrations. Engineering Computations, 18(1/ 2): 193-214, 2001.
  • [39] M. Kitahara. Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates. Elsevier, 1985.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0009-0083
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.