PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FEM analysis of strain distribution in tibia bone and relationship between strains and adaptation of bone tissue

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the research is the estimation of strain distribution in tibia bone. Resultant strain distribution constitutes necessary data for the calculations made in the process of simulation of bone tissue adaptation. Estimation of strain distribution in proximal part of tibia bone is made for different load conditions (including the one following total knee arthroplasty and a surgical correction of lower limb with the application of high tibial osteotomy). The model of tibia bone and soft tissues, prepared for finite element analysis, was made with the use of Ansys 5.6. The geometry of bone was estimated by 3-D digitalisation of a physical model of bone. Displacements distribution obtained from the simulation was compared with the measurements of the physical model of a knee joint. In the research the holographic interferometry method was applied. The results of this calculation are helpful in the estimation of boundary conditions for a simulation of bone tissue functional adaptation in the region of a knee joint. It has been found out that there are differences in strain distribution in different load conditions. However, the perfect agreement of experimental and numerical results for a simple static load indicates that the numerical model is valid for this simulation in a certain range of the applied load.
Rocznik
Strony
353--367
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Wrocław University of Technology, Institute of Machine Design and Operation, Experimental Mechanics and Biomechanics Division, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
autor
  • Wrocław University of Technology, Institute of Machine Design and Operation, Experimental Mechanics and Biomechanics Division, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
Bibliografia
  • [1] R. Będziński, K. Ścigała, M. Bernakiewicz. Biomechanical aspects of artificial joint implantation in a lower limb. Journal of Applied and Theoretical Mechanics, 37: 455-479, 1999.
  • [2] R. Będziński. Biomechanika inżynierska. Zagadnienia wybrane (in Polish). Wydawnictwo Politechniki Wrocławskiej, Wrocław, 1997.
  • [3] R. Będziński, A. Pozowski, K. Ścigała. Experimental verification of tibial osteotomy performed using different techniques. Procc. 131 Danubia Adria Symposium on Experimental Method s in Solid Mechanics. 41-44 Slovakia, 1996.
  • [4] R. Będziński, K. Ścigała. Experimental analysis of surgically corrected knee joint. Strain, 34: 188-194, 1998.
  • [5] G.S. Beaupre, T.E. Orr, D.R. Carter. An approach for time - dependent bone modeling and remodeling applications: a preliminary simulation. Journal Orthop. Res. 8: 662-670, 1990.
  • [6] D.B. Burr, R.B. Martin, M.B. Schaffer, E.L. Randin. Bone remodeling in response to in vivo fatigue microdamege. J. Biomechanics, 18: 189-200, 1985.
  • [7] D.R. Carter. Mechanical loading history and skeletal biology. J. Biomechanics, 20: 1095-1109, 1987.
  • [8] D.R. Carter, D.P. Fyhrie, R.T. Whalen. Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. J. Biomechanics, 20: 785-794, 1987.
  • [9] D.R. Carter, W.C. Hayes. The compressive behavior of bone as a two-phase porous structure. Journal of Bone and Joint Surgery, 59A: 954-962, 1977.
  • [10] E.J. Cheal, W.C. Hayes, A.A. White. Stress analysis of compression plate fixation and its effects on long bone remodeling. J. Biomechanics, 18: 141-150, 1985.
  • [11] E.Y.S. Chao. A survey of finite element analysis in orthopedic biomechanics: the first decade. R. Huiskes. J. Biomechanics, 16: 385-409, 1983.
  • [12] S.C. Cowin, R.T. Hart, J.R. Balser, D.H. Kohn. Functional adaptation in long bones: establishing in vivo values for surface remodeling rate coefficients. J. Biomechanics, 18: 665-684, 1985.
  • [13] D.E. Hurwitz, D.R. Summer, T.P. Andriacchi, D.A. Sugar. Dynamic knee loads during gait predict tibial bone distribution. Journal of Biomechanics, 31: 423-430, 1998.
  • [14] R. Huiskes, H. Weinans, H.J. Grootenboer, M. Dalstra, B. Fundala, T.J. Slooff. Adaptive bone-remodelling theory applied to prosthetic design analysis. Journal of Biomechanics, 20: 1135-1150, 1987.
  • [15] C.R. Jacobs, J.C. Simo, G.S. Beaupre, D.R. Carter. Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. Journal of Biomechanics, 30: 603-613, 1997.
  • [16] C.R. Jacobs, M.E. Levenston, G.S. Beaupre, J.C. Simo, D.R. Carter. Numerical instabilities in bone remodeling simulations: the advantages of a node-based finite element approach. Journal of Biomechanics, 28: 449-459, 1995.
  • [17] L.E. Lanyon. Functional strain in bone tissue as an objective, and controlling stimulus for adaptive bone remodeling. Journal of Biomechanics, 20: 1083-1093, 1987.
  • [18] P.G. Maquet. Biomechanics of knee, Springer-Verlag, Berlin, 1983.
  • [19] G. Marotti, M. Ferretti, M.A. Muglia, C. Palumbo, Palazzini. A quantitative evaluation of osteoblast-osteocyte relationships on growing endosteal surface of rabbit tibiae, S., Bone, 13: 363-368, 1992.
  • [20] D.M. O'Doherty, S.P. Butler, A.E. Goodship. Stress protection due to external fixation. Journal of Biomechanics, 28: 575-586, 1995.
  • [21] P J. Prendergast. Finite Element Models in tissue mechanics and orthopaedic implant design. Clinical Biomechanics, 12: 343-366, 1997.
  • [22] B. van Rietbergen, R. Huiskes, H. Weinans, D.R. Sumner, T.M. Turner, J.O. Galante. The mechanism of bone remodeling and resorption around press-fitted THA sterns. Journal of Biomechanics, 26: 369-382, 1993.
  • [23] B. van Rietbergen, H. Weinans, R. Huiskes, A. Odgaard. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. Journal of Biomechanics, 28: 69-81, 1995.
  • [24] C.H. Turner, V. Anne, R.M. Pidaparti. A unifrom strain criterion for trabecular bone adaptation: do continnumlevel strain gradients drive adaptation. Journal of Biomechanics, 30: 555-564, 1997.
  • [25] D.R. Turner, T.M. !gloria, R.M. Urban, J.O. Galante. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. Journal of Biomechanics, 31: 909-917, 1998.
  • [26] H. Weinans, R. Huiskes, H.J. Grootenboer. The behavior of adaptive bone-remodeling simulation models. Journal of Biomechanics, 25: 1425-1441, 1992.
  • [27] J. Wolff. Ueber die Bedeutung der Architectur der spongiosen Substanz für die Frange vom Knochenwachsthum. Zentralblatt für die Medizinischen Wissenschaften, 1869.
  • [28] http:/jwww.sawbones.se
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0009-0082
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.