PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Trefftz method to steady-state heat conduction problem in functionally gradient materials

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes the application of Trefftz method to the steady-state heat conduction problem on the functionally gradient materials. Since the governing equation is expressed as the non-linear Poisson equation, it is difficult to apply the ordinary Trefftz method to this problem. For overcoming this difficulty, we will present the combination scheme of the Trefftz method with the computing point analysis method. The inhomogeneous term of the Poisson equation is approximated by the polynomial of the Cartesian coordinates to determine the particular solution related to the inhomogeneous term. The solution of the problem is approximated with the linear combination of the particular solution and the T-complete functions of the Laplace equation. The unknown parameters are determined so that the approximate solution will satisfy the boundary conditions by means of the collocation method. Finally, the scheme is applied to some numerical examples.
Rocznik
Strony
339--351
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
  • Graduate School of Information Sciences, Nagoya University
autor
  • Department of Mechanical Engineering, Daidoh Institute of Technology
autor
  • Graduate School of Information Sciences, Nagoya University
Bibliografia
  • [1] A.J. Nowak, A.C. Neves. The Multiple Reciprocity Boundary Element Method. Comp. Mech. Pub. / Springer Verlag, 1994.
  • [2] A.J. Nowak. Application of the multiple reciprocity BEM to nonlinear potential problems. Engineering Analysis with Boundary Elements, 18: 323-332, 1995.
  • [3] T.W. Partridge, C.A. Brebbia, L.C. Wrobel. The Dual Reciprocity Boundary Element Method. Comp. Mech. Pub. / Springer Verlag, 1992.
  • [4] C.S. Cheng, C.A. Brebbia, H. Power. Dual reciprocity method using compactly supported radial basis functions. Communications of Numerical Methods in Engineering, 15: 225-242, 1999.
  • [5] W. Florez, H. Power , F. Chejne. Multi-domain dual reciprocity bern approach for the navier-stokes system of equations. Communications in numerical methods in engineering, 16: 10, 671-682 , 2000.
  • [6] K.M. Singh and M. Tanaka. Dual reciprocity boundary element analysis of inverse heat conduction problems. Computer Methods in Applied Mechanics & Engineering, 190: 40, 5283-5296, 2001.
  • [7] S.Q. Xu, N. Kamiya. A formulation and solution for boundary element analysis of inhomogeneous-nonlinear problem. Computational Mechanics, 22: 5, 367-384, 1998.
  • [8] S.Q. Xu , N. Kamiya. A formulation and solution for boundary element analysis of inhomogeneous-nonlinear problem; the case involving derivatives of unknown function. Engineering Analysis with Boundary Elements, 23: 5/6, 391, 1999.
  • [9] E. Trefl'tz. Ein Gegenstück zum ritzschen Verfahren. Proc. 2nd Int. Gong. Appl. Mech., Zurich, pp. 131-137, 1926 .
  • [10] Y.K. Cheung, W.G. Jin, O.C. Zienkiewicz. Direct solution procedure for solution of harmonic problems using complete, non-singular, Trefftz functions. Communications in Applied Numerical Methods, 5: 159-169, 1989.
  • [11] W.G. Jin, Y.K. Cheung, O.C. Zienkiewicz. Application of the Trefftz method in plane elasticity problems. International Journal for Numerical Methods in Engineering, 30: 1147-1161, 1990.
  • [12] I. Herrera. Theory of connectivity: A systematic formulation of boundary element methods. In: C.A. Brebbia, editor , New Developments in Boundary Element Methods (Proc. 2nd Int. Seminar on Recent Advances in BEM, Southampton, England, 1980), pp. 45-58. Pentech Press, 1980.
  • [13] N. Kamiya, S.T. Wu. Generalized eigenvalue formulation of the Helmholtz equation by the Trefl'tz method. Engineering Computations, 11: 177-186, 1994.
  • [14] A.P. Zieliński, O.C. Zienkiewicz. Generalized finite element analysis with T-complete boundary solution function. International Journal for Numerical Methods in Engineering, 21: 509-528, 1985.
  • [15] E. Kita, Y. Ikeda, N. Kamiya. Solution of non-linear poisson equation by Trefftz method. International Journal for Numerical Methods in Engineering. (Submitted).
  • [16] E. Kita, Y. Ikeda, N. Kamiya. Trefftz solution for boundary-value problem of Poisson equation (the case involving derivatives of unknown function). Engineering Analysis with Boundary Elements. (Submitted).
  • [17] E. Anderson, Z. Bai , C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen. LAPACK User's Manual. SIAM, 2-nd edition, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0009-0081
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.