PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Object-oriented software system that performs FPM simulation in the area with moving boundary, and its application to the blood flow problem

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the project of object-oriented software system for modeling flows of fluids inside the area with moving boundary. The flow of a fluid is modeled by using Fluid Particle Model. Finite Elements mesh is generated on the boundary of the area, to allow calculations of stresses on the boundary, arisen from interaction of the fluid with the boundary. Here was presented the application of the system, that simulates the phenomenon of energy and mass transport in large arteries in man. The validity of the computational method was established by comparing the numerical results to medical measurements data. The architecture and results of Fluid Particle Model were presented to compare with the architecture and results of Finite Element models for blood flow in arteries, described in other publications.
Rocznik
Strony
296--319
Opis fizyczny
Bibliogr. 37 poz., tab., wykr.
Twórcy
autor
  • The University of Texas at Austin, Institute for Computational Engineering and Sciences ICES, USA
  • AGH University of Science and Technology, Department of Computer Methods in Metallurgy, Kraków, Poland
Bibliografia
  • [1] L. Arnold. Stochastic Differential Equations: Theory and Applications. R. Oldenbourg Verlag, Munich, 1973.
  • [2] G. Booch. Object-oriented analysis and design with applications. The Benjamin / Cummings Publishing Company, Inc., Redwood City, California, 1994.
  • [3] G. Booch, I. Jacobson, J. Rumbaugh. The Unified Modeling Language User Guide. Adison-Wesley Pub. Co., 1998.
  • [4] C.G. Caro, T.J . Pedley, R.C. Schroter, W.A. Seed. The mechanics of the circulation. Oxford University Press, Oxford, 1978.
  • [5] W. Dzwinel, W. Aida, J. Kitowski, D.A. Yuen. Using discrete particles as a natural solver in simulating multiplescale phenomena. UMSI 99/131, July 1999.
  • [6] P. Español. Fluid particle model. Physical Review E, 57: 3, 2930-2948, 1998.
  • [7] D.A. Steinman, C.R. Ethier, X. Zhang, S.R. Karpik. The effect of flow waveform on anastomotic wall shear stress patterns. ASME Adv. Bioengrgr., 173-176, 1995.
  • [8] Y.C. Fung. Biomechanics. Springer-Verlag, New York, 1984.
  • [9] R.F. Furchgott, J.V. Zawadzki. The obligatory role of endothelial cells on the relaxation of arterial smooth muscle by acetylcholine. Nature, 288: 373-376, 1980.
  • [10] W. Harvey. On the circulation of blood. Blackwell, Oxford, 1957.
  • [11] S.M. Hilton. A peripheral arterial conduction mechanism under lying dilation of the femoral artery and concerned in functional vasodilation in skeletal muscle. J. Physiol., 149: 93-111, 1959.
  • [12] J. Holtz, U. Forstermann, U. Pohl, M. Geisler, E. Bassenge. Flow-dependent endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: Effects of cyclo-oxygenase inhibition. J. Cardiovasc. Pharmacal., 6: 1161-1169, 1984.
  • [13] J.A. Jensen. Estimation of blood viscosities using ultrasound. Cambridge University Press, Cambridge, 1996.
  • [14] A. Kabala, P. Kalita. Application of thin shell theory for modelling dynamics of arterial wall. Proceedings of Seventh National Conference on Application of Mathematics in Biology and Medicine, 2001.
  • [15] S. Konturek. Fizjologia człowieka, tom II, Układ krqienia. wydanie VII poprawione, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków, 2000.
  • [16] M. Lie, O.M. Sjersted, F. Kill. Local regulation of vascular cross section during changes in femoral arterial blood flow in dogs. Circ. Res., 27: 727-737, 1970.
  • [17] R.C. Little. Physiology of the heart and circulation, Year Book Medical Publishers, Chicago, 1985.
  • [18] C.A. Marsh, G. Backx, M.H. Ernst. Static and dynamic properties of dissipative particle dynamics. Physical Review E, 56(2): 1676-1691, 1997.
  • [19] D.A. McDonnald. Blood Flow in Arteries, Edward Arnold, London, 1974.
  • [20] R.L. Memmler, D.L. Wood. Structure and function of the human body. J.B. Lippincott Company, Philadelphia, 1987.
  • [21] R.M. Nerem, W.A. Seed. An in vivo study of aortic flow disturbances. Cardiovascular Research, 6: 1-14, 1972.
  • [22] R.M. Nerem, W.A. Seed, N.B. Wood. An study of the velocity distribution and transition to turbulence in the aorta. J. Fluid Mech., 52: part 1: 137-160, 1972.
  • [23] A. Nowicki. Podstawy ultrasonografii doplerowskiej, PWN, Warszawa, 1995.
  • [24] M.S. Olufsen. Structured tree out flow condition for blood flow in large systemic arteries, Am. J. Physiol., Vol. 276, Heart Circ. Physiol., 45: H257-H268, 1999.
  • [25] M. Paszyński. Calculations of blood flow in arteries - comparison of Fluid Particle Model with Finite Elements Methods. Proceedings of Seventh National Conference on Application of Mathematics in Biology and Medicine, Zawoja, 2001.
  • [26] M. Paszyński, A. Pelc. Numerical analysis of peristaltic blood flow in arteries. GAMES, 8: 4, 2001.
  • [27] K. Perktold , M. Resch, R. Peter. Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation, J. Biomech., 24(6): 409-420, 1991.
  • [28] U. Pohl, J. Holtz, R. Busse, E. Bassenge. Crucial role of the endothelium in the vasodilator response to increase flow in vivo. Hypertension, 8: 37-44, 1986.
  • [29] A. Quarteroni, T. Massimiliano, A. Veneziani. Computational vascular fluid dynamics: problems, models and methods. Comput Visual Sci., 2: 163-197, 2000.
  • [30] M.F. Rourke, M.E. Safar. Arterial vasodilation, mechanisms and therapy, Edward Arnold, London, 1993.
  • [31] M.F. Rourke, R.P. Kelly. Wave reflection in the systemic circulation and its implications in ventricular function, Journal of Hypertension, 11: 327-337, 1993.
  • [32] G.M. Rubanyi, J.C. Romero, P.M. Vanhoutte. Flow-induced release of endothelium derived relaxing factor. Am. J. Physiol, 250: H1145-9, 1986.
  • [33] R. Schaefer, J. Krok, P. Leżański, J. Orkisz, P. Przybylski. Basic concepts of an open distributed system for cooperative design and structure analysis. GAMES, 3: 169-186, 1996.
  • [34] W.A. Seed, N.B. Wood. Velocity patterns in the aorta. Cardiovascular Research, 5: 319-330, 1971.
  • [35] V.P. Srivastava, M. Saxena. A two-fluid model of non-Newtonian blood flow induced by peristaltic waves. Rheol Acta, 34: 406-414, 1995.
  • [36] B. Stroustrup. The C++ Programming Language, Second Edition, Reading, Addison-Wesley Publishing Company, Massachusetts, 1991.
  • [37] C.A. Taylor, T.J. R. Hughes, C.K. Zarris. Finite element modeling of blood flow in arteries. Computer Methods in Applied Mechanics and Engineering, 158: 155-196, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0009-0079
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.