Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Optimal design of materials and structures OPTY-2001 (August 27-29, 2001 ; Poznań ; Polska)
Języki publikacji
Abstrakty
In this paper a numerical design algorithm is described which enables the minimization of the stress intensity factor in a machine component by introducing the defense notch system into the component (weakening of the component) or/and by introducing stiffeners into the component (stiffening of the component) and selection of the shape of its boundary. The paper starts with the extensive review of literature devoted to the optimal design of machine parts with fracture constraints. The design procedure used is the combination of mathematical methods of computer graphics, the Boundary Element Method or the Finite Element Method used for the analysis of the stress field, the sensitivity analysis for the response gradient computations assisted by the Sequential Linear Programming. Also the concept of stop holes drilled at the crack tip, to crack arrest, is discussed. That means replacement of singular stress filed problem (cracks) by quasi-singular one (notches) and optimal design of stop holes becomes notch shape optimization problem.
Rocznik
Tom
Strony
239--257
Opis fizyczny
Bibliogr. 62 poz., rys., wykr
Twórcy
autor
- Technical University of Koszalin [Politechnika Koszalińska], ul. Racławicka 15/17, Koszalin, Poland
autor
- Polish Academy of Science, Institute of Fundamental Technological Research, ul. Świętokrzyska 21, 00-049 Warsaw, Poland
Bibliografia
- [1] M.H. Aliabadi, D.P. Rooke. Numerical Fracture Mechanics. Computational Mechanics Publications, Southampton, 1991.
- [2] T.L. Anderson. Fracture Mechanics. Fundamentals and Applications. CRC Press, Boca Raton, 1995.
- [3] N.V. Banichuk. Optimal design of quasi-brittle elastic bodies with cracks. Mechanics of Structures and Machines, 26: 365-376, 1998.
- [4] N.V. Banichuk, E.W. Makeev, V.V. Saurin. On sensitivity of quasibrittle fracture conditions (in Russian) . Mechanics of Solids (MTT), 1: 62-69, 1998.
- [5] N.V. Banichuk, F.K. Ragnedda, M. Serra. Probabilistic approaches for optimal beam design based on fracture mechanics. Meccanica, Int. J. of the Italian Association of Theoretical and Applied Mechanics, 34: 29-38, 1998.
- [6] W. Beluch. Sensitivity Analysis and Evolutionary Optimization of Cracked Mechanical Structures (in Polish). PhD. Thesis, Mechanical Department, Silesian University of Technology, Gliwice, Poland, 2000.
- [7] K. Bethge, C. Mattheck. Fatigue testing of a shaped-optimized circular hole in a plate under tensile and bending loads. Int. J. Fatigue, 12: 489-492, 1990.
- [8] T. Burczyński, W. Beluch, G. Kuehn. Sensitivity analysis of cracked structures using Boundary Elements. In: Proc of XIII Polish Conference on Computer Methods in Mechanics, Poznań, Poland, Vol. 1: 213-220, 1997.
- [9] T. Burczyński, W. Beluch, G. Kuehn. Sensitivity analysis of cracked bodies. In: Proc of 32nd Solid Mechanics Conference, Zakopane, Poland, 97-98, 1998.
- [10] T. Burczyński, W. Beluch. The dual boundary element method in sensitivity analysis of elastic system with cracks. In: Proc of XXXVII Symp. Modelling in Mechanics, Wisła, Poland, 47-50, 1998.
- [11] T. Burczyński, W. Beluch. Optimization of cracked structures using evolutionary algorithms. In: Proc of XIV Polish Conference on Computer Methods in Mechanics, Rzeszów, Poland, 53-54, 1999.
- [12] P. Chaperon, R. Jones, M. Heller, S. Pitt, F. Rose. Methodology for structural optimisation with damage tolerance constraints. Engineering Failure Analysis. 7: 281-300, 2000.
- [13] G. Cheng, B. Fu. Shape optimisation of continuum with crack. In: G.I.N Rozvany, B.L. Karihaloo, eds., Structural Optimisation, 57-62, Kluwer Academic Publishers, 1988.
- [14] C.S. Davis. Automated design of stiffened panels against crack growth and fracture among other design constraints. In: Flaw Growth and Fracture, ASTM STP 631, 416-445. Amer. Soc. Testing Mater., 1977.
- [15] C.S. Davis. Line search methods for extended penalty function environments. Int. J. Num. Meth. Engng., 15: 867-888, 1978.
- [16] M.W. Dobbs, R.B. Nelson. Minimum weight design of stiffened panels with fracture constraints. Computers and Structures, 8: 753-759, 1978.
- [17] B.J.D. Esping, D. Holm. Structural shape optimization using OASIS, In: G.I.N. Rozvany, B. Karihaloo, eds.,Structural Optimisation, 299-306, Kluwer Academic Publishers, 1988.
- [18] E.A. Fancello, E.O. Taroco, R.A. Feijoo. Shape sensitivity analysis in fracture mechanics. In: J. Herskovits ed., Proc. of Structural Optimization 93, Universidade Federate Rio de Janeiro, Vol. 2, 239-248, 1993.
- [19] B. Farahmand. Fracture Mechanics of Metals, Composites, Welds, and Bolted Joints. Kluwer Academic Publishers, Boston, 2001.
- [20] A. Francavilla, C.V. Ramakrishnan, O.C. Zienkiewicz. Optimization of shape to minimize stress concentration, J. Strain Anal., 10: 63-69, 1975.
- [21] L. Gani, S.D. Rajan. Use of fracture mechanics and shape optimization for component design, AIAA J., 37: 255-260, 1999.
- [22] G.V. Guinea, J. Planas, M. Elices. Ki evaluation by the displacement extrapolation technique. Engng. Fracture Mechanics. 66: 243-255, 2000.
- [23] Z. Gürdal, R.T. Haftka. Design of stiffened composite panels with a fracture constraint. Computers and Structures, 20: 457-465, 1985.
- [24] G.N. Karpow, N.W. Kurnosow, W.Z. Parton. Application of potential method to 2D elastic domain with irregular boundary (in Russian). Strength of Materials, 7: 35, 1982.
- [25] D.J. Keum, B.M. Kwak. Calculation of stress intensity factors by sensitivity analysis with respect to change of boundary conditions. Computers and Structures, 32: 63-69, 1992.
- [26] Z. Knésl. A fracture mechanics approach to the optimum design of cracked structures under cyclic loading. In: A. Carpinteri, ed., Handbook of Fatigue Propagation in Metallic Structures, Vol. I, 551-577. Elsevier, Amsterdam, 1994.
- [27] G.S. Kruse. An automated procedure for preliminary design of primary structure for transport aircraft structures. In: ASME 76- WA/ Aero-9, American Society of Mechanical Engineers, 1976.
- [28] L. Lamberti, C. Pappalettere. Comparison of the numerical efficiency of different sequential linear programming based algorithms for structural optimization problems. Computers and Structures, 76: 713-728, 2000.
- [29] E. Lund. Shape optimization using Weibull statistics of brittle failure. Structural Optimization, 15: 208-214, 1998.
- [30] C. Mattheck, D. Erb, K. Bethge, U. Begemann. Three-dimensional shape optimization of a bar with a rectangular hole. Fatigue Fract. Engng. Mater. Struct., 15: 347-351, 1992.
- [31] S.A. Meguid. Engineering Fracture Mechanics, Elsevier, London, 330-332, 1989.
- [32] K.L. Molski. A Unitary Weight Function Application in the Dimensioning of Structures using Fracture Mechanics Methods (in Polish). Scientific Reports. Warsaw University of Technology, Mechanics, Monograph , Vol. 185, 2000.
- [33] P.N. Osiv, V.V. Panasyuk, M.P. Savruk. Stress state in a plate weakened by two circular holes and crack (in Russian). Solid Mechanics (MTT), 3: 130-134, 1983.
- [34] V.V. Panasyuk. Stress concentration around two ring holes connected by a narrow slot, (in Russian). Strength of Materials, 9: 17-20, 1983.
- [35] M.P. Savruk. Stress Intensity Factors in Cracked Bodies (in Russian). Vol. 2 of Vols. 1-4, Panasyuk V.V. , ed., Fracture Mechanics and Strength of Materials. Naukova Dumka, Kyiv, 1988-1990.
- [36] P. Pedersen. Optimal shape design of a hole in front of a crack. In: Extended Abstracts of the Forth IV World Congress of Structural and Multidisciplinary Optimization (WCSM0-4), June 4-8, 2001, Dalian, China, 320-321.
- [37] W.D. Pilkey. Peterson's Stress Concentration Factors, 2-nd edition. John Wiley and Sons, New York, 1997.
- [38] A.V. Pitukhin. Teeth gears optimum design with application of fracture mechanics methods (in Russian). Vestnik mashinostroenija, 7: 15-16, 1989.
- [39] A.V. Pitukhin. Fracture mechanics and optimal design. Int. J. Numer. Meth. Engng., 34: 933-940, 1992.
- [40] A.V. Pitukhin. Optimal design problems using fracture mechanics methods. Computers and Structures , 65: 621-624, 1997.
- [41] A. Portela, M.H. Aliabadi. On the accuracy of boundary and finite element technique for crack problems in fracture mechanics. In: C.A. Brebbia, J.J. Connor, eds., Advances in Boundary Elements, Vol. 1, Computations and Fundamentals. CMP, Springer-Verlag, Berlin, 123-137, 1989.
- [42] A. Portela, M.H. Aliabadi. The dual boundary element method: effective implementation for crack problems. Int. J. Numer. Meth. Engng., 33: 1269-1297, 1992.
- [43] A. Portela, M.H. Aliabadi, D.P. Rooke. Dual boundary element analysis of cracked plates: singularity subtraction technique. Int. J. Fracture, 55: 17-28, 1992.
- [44] K. Rykaluk. Cracks in Steel Structures (in Polish). Monograph, Dolnośląskie Wydawnictwo Edukacyjne, Wrocław, 2000.
- [45] J. Samuelson, D. Holm, B. Esping. Optimization of hydraulic cylinder. Int. J. Fatigue. 12: 493-504, 1990.
- [46] V.V. Saurin. Shape design sensitivity analysis for fracture conditions. Computers and Structures, 76: 399-405, 2000.
- [47] J.M. Serra. Optimum beam design based on fracture crack propagation. Stmctural and Multi-disciplinary Optimisation, 19: 159-163, 2000.
- [48] C.S. Shin, C.M. Wang, P.S. Song. Fatigue damage repair: a comparison of some possible methods. Int. J. Fatigue, 18: 535-546, 1996.
- [49] S.B. Thomas, M.J. Mhaiskar, R. Sethuraman. Stress intensity factors for circular hole and inclusion using finite element alternating method. Theoretical and Applied Fracture Mechanics, 33: 73-81, 2000.
- [50] P.M. Toor. A review of some damage tolerance design approaches for aircraft structures. Engng. Fracture Mechanics, 5: 837-880, 1973.
- [51] J. Trevelyan, P.A. Adey, A. Elzein. The use of BEASY to provide a simplified analysis technique in fracture mechanics. In: M.H. Aliabadi. C.A. Brebbia, D.J. Cartwright, eds. ,. Localized Damage Computer Aided Assessment and Control, Vol. 3, Advanced Computational Methods, 307-322. CMP, Southampton, 1990.
- [52] G. Tsamasphyros, P. Vouthounis, E.N. Theotokoglu. Reinforced strip weakened by cracks and holes. In: M.H. Aliabadi., D.J. Cartwright, eds., Localized Damage Computer Aided Assessment and Control, Vol. 3. Advanced Computational Methods, 307-322. CMP, Southampton, 1990.
- [53] V. Tvergaard. On the optimum shape of a fillet in a flat bar with restrictions, In: A. Sawczuk, Z. Mróz, eds., Optimization in Structural Design, 182-195, IUTAM Symp., Warsaw, 1973. Springer-Verlag, Berlin, 1975.
- [54] R. Vitali, R.T. Haftka, B.V. Sankar. Multifidelity design of stiffened composite panel with a crack. In: Proc. 3rd World Congress of Structural and Multidisciplinary Optimization, May 17-21, 1999, Buffalo, New York, CD-ROM 51-AAM2-l, pp. 6.
- [55] J. Vrbka, Z. Knésl. Optimized design of a high pressure compound vessel by FEM. Computers and Structures, 24: 809-812, 1986.
- [56] N. Vulić, S. Jecić, V. Grubšić. Validation of crack arrest technique by numerical modelling. Int. J. Fatigue, 19: 283-291, 1997.
- [57] B. Wilczyński. Multi-disciplinary shape optimization of notches in 2-D machine and structural components. GAMES, 3, 245-262, 1996.
- [58] B. Wilczyński. Shape optimization for stress reduction around single and interacting notches based on fictitious stress method. Engng. Analysis with Boundary Elements, 19: 117-128, 1997.
- [59] B. Wilczyński. Analytical shape sensitivity by direct differentiation using indirect BEM, In: C.A. Brebbia, ed., Boundary Elements XIX, 389-398, Computational Mechanics Publications, Southampton, 1997.
- [60] B. Wilczyński. Shape optimisation to minimize stress concentration in shell structures. In: Identification, Control and Optimisation of Engineering Structures, 119-132. Civil-Comp Press, Edinburgh, 2000.
- [61] B. Wilczyński, Z. Mróz. Optimal design for minimization of stress intensity factors with account for stiffness constraints. In: Extended Abstracts of the Forth World Congress of Structural and Multidisciplinary Optimization, June 4-8, 2001, Dalian, China, 89-90.
- [62] Z.J. Yang, J.F. Chen, G.D. Holt. Efficient evaluation of stress intensity factors using virtual crack extension technique. Computers and Structures. 79: 2705-2715, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0009-0075