PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A recursive method for the dynamic analysis of a system of rigid bodies in plane motion

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a recursive method for generating the equations of motion of a system of rigid bodies with all common types of kinematic joints in plane motion is presented. The method rests upon the idea of replacing the rigid body by a dynamically equivalent system of particles with added geometric constraints that fix the distance between the particles. Some kinematic constraints due to common types of kinematic joints are automatically eliminated. The concepts of linear and angular momentums are used to generate the rigid body equations of motion without either introducing any rotational coordinates or distributing the external forces and moments over the particles. For the open loop case, the equations of motion are generated recursively along the open chains. For the closed loop case, the system is transformed to open loops by cutting suitable kinematic joints with the addition of cut-joints kinematic constraints. An example of a multi-branch closed-loop system is chosen to demonstrate the generality and simplicity of the proposed method.
Rocznik
Strony
557--566
Opis fizyczny
Bibliogr. 12 poz., rys., wykr.
Twórcy
autor
  • Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University (El-Fayoum Branch), Egypt
Bibliografia
  • 1] H.A. Attia. A Computer-Oriented Dynamical Formulation with Applications to multibody Systems. Ph.D. Dissertation, Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo Unviersity, 1993.
  • [2] J. Denavit, R.S. Hartenberg. A kinmatic notation for lower-pair mechanisms based on matrices. ASME Journal of Applied Mechanis, 215-221, 1955.
  • [3] R.C. Dix, T.J. Lehman. Simulation of the dynamics of machinery. ASME Journal of Engineering for Industry, 94: 433-438, 1972.
  • [4] C.W. Gear. Differential-algebraic equations index transformations. SIAM Journal of Scientific and Statistical Computing, 9, 39-47, 1988.
  • [5] H. Goldstein. Classical Mechanics. Addison—Wesley, Reading, Mass. 1950.
  • [6] W. Jerkovsky. The Transformation Operator Approach to Multi-Body Dynamics. Aerospace Corp., El Segundo, Calif., Rept. TR-0076(6901-03)-5, 1976; also The Matrix and Tensor Quarterly, Part 1 in 27: 48-59, Dec. 1976.
  • [7] S.S. Kim, M.J. Vanderploeg. A general and efficient method for dynamic analysis of mechanical systems using velocity transformation. ASME Journal of Mechanisms, Transmissions and Automation in Design, 108(2): 176-182, 1986.
  • [8] P.E. Nikravesh. Computer Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs, N.J., 1988.
  • [9] P.E. Nikravesh, H.A. Attia. Construction of the equations of motion for multibody dynamics using point and joint coordinates. In: Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, pp. 31-60. Kluwer Academic Publications, NATO ASI, Series E: Applied Sciences, 268: 1994.
  • [10] P.E. Nikravesh, G. Gim. Systematic construction of the equations of motion for multibody systems containing closed kinematic loop. ASME Design Conference, 1989.
  • [11] N. Orlandea, M.A. Chace, D.A. Calahan. A sparsity-oriented approach to dynamic analysis and design of mechanical systems, Part I and II. ASME Journal of Engineering for Industry, 99: 773-784, 1977.
  • [12] P.N. Sheth, J.J. Uicker, Jr. IMP (Integrated Mechanisms Program), a computer-aided design analysis system for mechanisms linkages. ASME Journal of Engineering for Industry, 94: 454, 1972.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0006-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.