PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coupling generalized FC model to meshless EFG method for crack growth analysis in quasi-brittle materials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper a crack growth analysis in quasi brittle materials in plane stress state coupling the Fictitious Crack model to meshless Element-Free Galerkin method is presented. The FC model has been generalized and as a result a uniform algorithm of the analysis of crack propagation, which is a combination of elementary states mode I and mode II has been prepared. The problem is nonlinear because the traction forces contain, besides external loads, cohesive forces on the boundaries of the crack which depend on the actual state of the displacement field. The efficiency of the method has been tested on two standard examples
Rocznik
Strony
543--556
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
  • Cracow University of Technology, Faculty of Civil Engineering, Institute for Computational Civil Engineering, Warszawska 24, 31-155 Cracow, Poland
  • Cracow University of Technology, Faculty of Civil Engineering, Institute for Computational Civil Engineering, Warszawska 24, 31-155 Cracow, Poland
Bibliografia
  • [1] F. Barpi, S. Valente. Crack propagation under constant PE Borst, Bićanić, Mang, Meschke, eds., Computational Mada Constitutive laws for the process zone. In: de 1998. elhng oj Concrete Structures, Balkema, Rotterdam, 1998
  • [2] Z.P. Bazant, B.P. Oh. Crack band theory for fracture of concrete. Materials and Structures, 16(93): 155-177, 1983.
  • [3] Z.P. Bazant, P.A. Pfeiffer. Determination of fracture energy from size effect and brittleness number , ACJ Materials Journal, 846: 463-480, 1987.
  • [4] T. Belytschko, Y. Krongauz, M. Fleming, D. Organ, P. Krysl. Meshless methods: an overview and recent developments. Computer Methods in Applied Mechanics Engineering, 139: 3-47, 1996.
  • [5] T. Belytschko, Y. Krongauz, M. Fleming, D. Organ, W.K. Liu. Smoothing and acceleratedcomputations in the element free Galerkin method. Journal of Computational and Applied Mathetics, 74: 111-126, 1996.
  • [6] T. Belytschko, Y.Y. Lu, L. Gu. Element-free Galerkin method. International Journal for Numerical Methods in Engineering, 37: 229-256, 1994.
  • [7] T. Belytschko, D. Organ, Y. Kronganz. A coupled finite element-free Galerkin method. Computational Mechanics, 17: 186-195, 1995.
  • [8] I. Carol, P.C. Prat, C.M. Lopez. Normal shear cracking model: application to discrete crack analysis. ASCE Journal of Engineering Mechanics, 123(8), 1997.
  • [9] AL. Carpinteri, S. Valente, G. Ferrara, G. Melchiorri. Is mode II fracture energy a real material property? Computers and Structures, 48(3): 397-413, 1993.
  • [10] C. Cichoń, J. Jaśkowiec. EFGM analysis of crack growth in quasi-brittle materials. In: Polish Conference on Computer Methods in Mechanics, PCCM'99, Rzeszów (Poland), May 26-28, 1999.
  • [11] M. Elices, J. Planas. Numerical modelling and determination of fracture mechanics parameters. Hilleborg type modes. Mechanics of Concrete Structures, 3: 1611-1620, 1996.
  • [12] P.H. Feenstra. Computational aspects of biarial stress in plain and reinforced concrete. Dissertation, Delft University of Technology, Delft, The Netherlands, 1998.
  • [13] L. Ferrara. A Contribution to the Modelling of Mized Mode Fracture and Shear Transfer in Plain and Reinforced Concrete. Dissertation, Politecnico di Milano, 1998.
  • [14] M. Hassanzadeh. Behaviour of Fracture Process Zones in Concrete Influenced by Simultaneously Applied Normal and Shear Displacements. Dissertation, Lund Institute of Technology, Sweden, 1991.
  • [15] D. Hegen. An Element-free Galerkin Method for Crack Propagation in Brittle Materials. Dissertation, Eindhoven University of Technology, 1997.
  • [16] A. Hillerborg, M. Modeer, E. Petersson. Analysis of crack formation and growth in concrete by means of fracture mechanics and finite elements. Computers and Structures, 6: 773-182, 1976.
  • [17] D.A. Hordijk. Local Approach to Fatigue of Concrete. Dissertation, Delft University of Technology, The Netherlands, 1991. 1997
  • [18] B.L. Karihaloo. Fracture Mechanics and Structural Concrete. Longman, 1997.
  • [19] P.D. Lancaster, K. Salkauskas. Surface generated by moving least squares methods. Mathematics and Computation, 37(155): 141-158, 1981.
  • [20] J. Lemaitre. A Course on Damage Mechanics. Springer Verlag, 1992.
  • [21] T. Liszka, J. Orkisz. The finite difference method at arbitrary irregular gridsand its application in applied mechanics. Computers and Structures, 11: 83-95, 1980.
  • [22] B. Nayroles, G. Touzot, P. Villan. Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mechanics, 10: 307-318, 1992.
  • [23] M.B. Nooru-Mohamined. Mixed-mode fracture of concrete: an experimental approach. Dissertation, Delft University of Technology, The Netherlands, 1992.
  • [24] U. Ohlsson, T. Olofson, Mixed-mode fracture and anchor bolts in concrete analysis with inner softening bands. Journal of Engineering Mechanics, pages 1027-103, 1997.
  • [25] J. Orkisz. Finite difference method. In: Kleiber, ed., Handbook of Computational Solid Mechanics, Chapter III, pp. 336-432. Springer-Verlag, Berlin, 1998.
  • [26] G. Pijaudier-Cabot, Ch. La Bordiere, S. Fichant. Damage mechanics for concrete modeling: applications and comparisons with plasticity and fracture mechanics. In: International Conference EURO-1994, vol. 1, pages 17-36, 1994.
  • [27] E. Schlangen, Experimental and Numerical Analysis of Fracture Process in Concrete. Dissertation, Delft University of Technology, The Netherlans, 1993.
  • [28] M. van Gils. Quasi-Brittle Fracture of Ceramics. Dissertation, Eindhoven University of Technology, 1997.
  • [29] J.G.M van Mier. Fracture Proccess of Concrete. CRC Press, 1997.
  • [30] P. Wawrzynek. A.R. Ingraffea. Discrete Modelling of Crack Propagatio. Theoretical Aspects and Implementation Issues in Two and Three Dimentions. Report 91-5, School of Civil and Environmental Engineering, Cornell University, Ithaca, 1991.
  • [31] G. Yagawa, T. Yamada. Free mesh method: A kind of Meshless finite element method. International Journal of Computational Mechanics, 9: 333-346, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0006-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.