PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of peristaltic blood flow in arteries

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of blood flow in arteries induced by peristaltic waves has been investigated. The methodology of modelling global circulation system has been outlined. Medical measurements required for problem formulation have been presented. Numerical solutions of blood flow in artery based on finite element method have been worked out. The paper presents local model of pulsatile blood flow in the human artery. Modelling of pulsatile flow in cardiovascular system could improve understanding and interpretation of flow measurements in arteries locally as well as ventricular-vascular interaction in healthy patients at rest and while exercising. Results achieved on local models could be generalized to formulate a global model of haemodynamics of cardiovascular system in man. This approach could help identifying physiology of optimal heart work at rest, physical activity and also in pathological conditions as hypertension, cardiac insufficiency, heart defects, coronary heart disease and origin and progression of artherosclerosis as well.
Słowa kluczowe
Rocznik
Strony
513--526
Opis fizyczny
Bibliogr. 29 poz., tab., wykr.
Twórcy
autor
  • Jagiellonian University, Department of Computer Science, ul. Nawojki 11, 30-072 Kraków, Poland
autor
  • Jagiellonian University, Collegium Medicum, ul. św. Anny 12, 31-008 Kraków, Poland
Bibliografia
  • [1] I. Babuška. Error-bounds for finite element method. Numer. Math., 16: 322-333, 1969.
  • [2] I. Babuška. The finite element method with Lagrangian multipliers. Numer. Math., 20: 179-192, 1973.
  • [3] R. Berne, M. Levy. Physiology. The C.V. Mosby Company, St.Louis, Toronto, 1983.
  • [4] C.G. Caro, T.J. Pedley, R.C. Schroter, W.A Seed. The Mechanics of the Circulation. Oxford University Press, Oxford, 1978.
  • [5] M. Danielewski, B. Bożek, K. Holly, G. Myśliwiec, J. Sipowicz, R. Schaefer. Distributed simulation strategies of graphite electrode forming process. Proc. of The Conf. Vecpar'98, Porto, 1998.
  • [6] Y.C. Fung. Biomechanics. Springer-Verlag, New York, 1984.
  • [7] R.F. Furchgott, J.V. Zawadzki. The obligatory role of endothelial cells on the relaxation of arterial smooth muscle by acetylcholine. Nature, 288: 373-376, 1980.
  • [8] S.M. Hilton. A peripheral arterial conduction mechanism underlying dilation of the femoral artery and concerned in functional vasodilation in skeletal muscle. J Physiol., 149: 93-111, 1959.
  • [9] M. Hoffman, J. Korewicki, Z. Zurzycki. Serce Niewydolne. Wyd. Medyczne, Warszawa, 1994.
  • [10] J. Holtz, U. Forstermann, U. Pohl, M. Geisler, E. Bassenge. Flow-dependent endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: Effects of cyclo-oxygenase inhibition. J. Cardiovasc. Pharrnacol., 6: 1161-1169, 1984.
  • [11] T.J.R. Hughes, L.P. Franca. Stabilized Finite Element Methods for the Stokes Problem. In: Incompressible Computational Fluid Dynamics - Trends and Advances. Cambridge University Press, 1991.
  • [12] J.A. Jensen. Estimation of Blood Viscosities using Ultrasound. Cambridge University Press, Cambridge, 1996.
  • [13] J. Kocemba, W. Król, K. Moczurad. Badania epidemiologiczne. Folia Med. Cracov, 18: 509, 1976.
  • [14] T.W. Latham. Fluid Motions in the Peristaltic Pump, M.S. Thesis. Masachusetts Institute of Technology, 1966.
  • [15] M. Lie, O.M. Sjersted, F. Kill. Local regulation of vascular cross section during changes in femoral arterial blood flow in dogs. Circ. Res., 27: 727-737, 1970.
  • [16] R.L. Memmler, D.L. Wood. Structure and Function of the Human Body. J.B. Lippincott Company, Philadelphia, 1987.
  • [17] R.M. Nerem, W.A. Seed. An in vivo study of aortic flow disturbances. Cardiovascular Research, 6: 1-14, 1972.
  • [18] R.M. Nerem, W.A. Seed, N.B. Wood. A study of the velocity distribution and transition to turbulence in the aorta. J. Fluid Mech., 52(1): 137-160, 1972.
  • [19] W.W. Nichols, M.F. O'Rourke. McDonald's Blood Flow in Arteries, 3rd edn. London, Edward Arnold, 1990. [20] A. Nowicki. Podstawy Ultrasonografii Dopplerowskiej. Warszawa, PWN, 1995.
  • [21] M.F. O'Rourke. Arterial Function in Health and Disease. Edinburgh, Churchil Livingstone, 1982.
  • [22] U. Pohl, J. Holtz, R. Busse, E. Bassenge. Crucial role of the endothelium in the vasodilator response to increase flow in vivo. Hypertension, 8: 37-44, 1986.
  • [23] G.M. Rubanyi, J.C. Romero, P.M. Vanhoutte. Flow-induced release of endothelium derived relaxing factor. Am. J. Physiol, 250: H1145-1149, 1986.
  • [24] W.A. Seed, N.B. Wood. Velocity patterns in the aorta. Cardiovascular Research, 5: 319-330, 1971.
  • [25] R. Schaefer, J. Krok, P. Leżański, J. Orkisz, P. Przybylski. Basic concepts of an open distributed system for cooperative design and structure analysis. CA MES, 3: 169-186, 1996.
  • [26] A.H. Shapiro, M.Y. Jaffrin, S.L. Wienberg. Peristaltic pumping with long wavelength at low Reynolds number. J. Fluid Mech., 37(4): 799-825, 1969.
  • [27] J.B. Shukla, R.S. Parihar, B.R.P. Rao, S.P. Gupta. Effects of peripheral layer viscosity on peristaltic transport of a bio-fluid. J. Fluid Mech., 97(2): 225-237, 1980.
  • [28] V.P. Srivastava, M. Saxena. A two-fluid model of non-Newtonian blood flow induced by peristaltic waves. Rheol. Acta, 34: 406-414, 1995.
  • [29] R. Temam. Navier—Stokes Equations Theory and Numerical Analysis. North-Holland, 1979.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0006-0059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.