PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A posteriori error estimation for equilibrium finite elements in elastostatic problems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Workshop on the Trefftz Method (2 ; 1999 ; Lisbon, Portugal)
Języki publikacji
EN
Abstrakty
EN
Equilibrated solutions, locally satisfying all the equilibrium conditions, may be obtained by using a special case of the hybrid finite element formulation. Equilibrium finite element solutions will normally present compatibility defaults, which may be directly used to estimate the error of the solution, a posteriori. Another approach is to construct a compatible solution using the stresses and displacements available from the hybrid solution. From this dual solution, an upper bound for the global error is obtained. In this paper, the hybrid equilibrium element formulation, the occurrence of spurious kinematic modes and the use of super-elements, in 2D and 3D, are briefly reviewed. Compatibility defaults for 2D and 3D are presented, together with an expression for an element error indicator explicitly based on such defaults. A local procedure for recovering conforming displacements from the equilibrium finite element solution is also presented. The h-refinement procedure is adapted to prevent irregular refinement patterns.
Słowa kluczowe
Rocznik
Strony
439--453
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Departamento de Engenharia Civil e Arquitectura, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
  • Departamento de Engenharia Civil e Arquitectura, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Bibliografia
  • [1] J.P.M. Almeida, J.A.T. Freitas, An alternative approach to the formulation of hybrid equilibrium finite elements. Comp. Struct., 40: 1043-1047, 1991.
  • [2] J.P.M. Almeida, 0.J.B.A. Pereira. A set of hybrid equilibrium finite element models for the analysis of three-dimensional solids. Int. J. Numer. Methods Engrg., 39: 2789-2802, 1996.
  • [3] I. Babuska, W.C. Rheinbolt. A posteriori error estimates for the finite element method. Int. J. Numer. Methods Engrg., 12: 1597-1615, 1978.
  • [4] J.F. Debongnie. A general theory of dual error bounds by finite elements. Report LMF/D5, University of Liege, 1983.
  • [5] J.A.T. Freitas. Formulation of elastostatic Hybrid-Trefftz stress elements. Comp. Meths. Appl. Mech. Engrg., 153: 127-151, 1998.
  • [6] C. Johnson, B. Mercier. Some equilibrium finite element methods for two-dimensional elasticity problems. Numer. Math., 30: 103-116, 1978.
  • [7] D.W. Kelly, J.P.S.R. Gago, 0.C. Zienkiewicz. A posteriori error analysis and adaptive processes in the finite element method: Part I — Error analysis. Int. J. Numer. Methods Engrg., 19: 1593-1619, 1983.
  • [8] P. Ladeve, D. Leguillon. Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal., 20(3): 483-509, 1983.
  • [9] E.A.W. Maunder, J.P.M. Almeida. Hybrid-equilibrium elements with control of spurious kinematic modes. Computer Assisted Mechanics and Engineering Sciences, 4: 587-605, 1997.
  • [10] A.J. May. Error Bounding in Meshes of Triangular Equilibrium Super-Elements. MSc Dissertation, Heriot-Watt University, Edinburgh, 1996.
  • [11] J.T. Oden, L. Demkowicz, W. Rachowicz, T.A. Westermann. Toward a universal h-p adaptive finite element strategy. Part 2. A posteriori error estimation. Comp. Meths. Appl. Mech. Engrg., 77: 113-180, 1989.
  • [12] 0.J.B.A. Pereira. Utilizacdo de Elementos Finitos de Equilario em Refinamento Adaptativo. PhD Thesis, Technical University of Lisbon, 1996.
  • [13] 0.J.B.A. Pereira, J.P.M. Almeida. Equilibrium finite elements and dual analysis in three-dimensional elastostatics. In: E.R.A. Oliveira, J. Bento, eds., Education, Practice and Promotion of Computational Methods in Engineering, 955-960. Techno-Press, Korea, 1995.
  • [14] 0.J.B.A. Pereira, J.P.M. Almeida, E.A.W. Maunder. Adaptive methods and related issues from the viewpoint of hybrid equilibrium finite element models. In: P. Ladev6ze, J.T. Oden, eds., Advances in Adaptive Computational Methods in Mechanics, 427-441. Elsevier Science, Amsterdam, 1998.
  • [15] 0.J.B.A. Pereira, J.P.M. Almeida, E.A.W. Maunder. Adaptive methods for hybrid equilibrium finite element models. Comput. Methods Appl. Mech. Engrg., 176: 19-39, 1999.
  • [16] M.A. Piteri. Geracdo de Malhas Hiercerquicas em Doranios Bidirnensionais e Tridimensionais. PhD Thesis, Technical University of Lisbon, 1998.
  • [17] W. Prager, J.L. Synge. Approximations in elasticity based on the concept of function space. Quart. Appl. Math., 5(3): 241-269, 1947.
  • [18] B.M.F. de Veubeke. Upper and lower bounds in matrix structural analysis. A GARDograf, 72: 165-201, 1964.
  • [19] B.M.F. de Veubeke. Diffusive equilibrium models. In: M. Geradin, ed., B.M. Fraeijs de Veubeke Memorial Volume of Selected Papers, 569-628. Sijthoff Buz Noordhoff, Alphen aan den Rijn, The Netherlands, 1980.
  • [20] B.M.F. de Veubeke, 0.C. Zienkiewicz. Strain energy bounds in finite element analysis by slab analogy. J. of Strain Analysis, 2(4): 265-271, 1967.
  • [21] B.G. Zhong, P. Beckers. Solution approximation error estimators for the finite element solution. Report SA-140, LTAS, University of Li6ge, January 1990.
  • [22] 0.C. Zienkiewicz, J.Z. Zhu. A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Engrg., 24: 337-357, 1987.
  • [23] 0.C. Zienkiewicz, J.Z. Zhu. The Superconvergent Patch Recovery and a posteriori error estimates: Part 1 — The recovery technique; Part 2 — Error estimates and adaptivity. Int. J. Numer. Methods Engrg., 33: 1331-1382, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0006-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.