PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

General aspects of Trefftz method and relations to error estimation of finite element approximations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Workshop on the Trefftz Method (2 ; 1999 ; Lisbon, Portugal)
Języki publikacji
EN
Abstrakty
EN
In this paper a guaranteed upper bound of the global discretization error in linear elastic finite element approximations is presented, based on a generalized Trefftz functional. Therefore, the general concept of complementary energy functionals and the corresponding approximation methods of Ritz, Trefftz, the method of orthogonal projection and the hypercircle method are briefly outlined. Furthermore, it is shown how to use a generalized Trefftz functional to solve a Neumann problem in linear elasticity. Based on an implicit a posteriori error estimator within the finite element method, using equilibrated local Neumann problems, the generalized Trefftz functional yields a computable guaranteed upper bound of the discretization error without multiplicative constants.
Słowa kluczowe
Rocznik
Strony
425--437
Opis fizyczny
Bibliogr. 51 poz., wykr.
Twórcy
autor
  • Institute for Structural and Computational Mechanics, University of Hannover, Appelstr. 9A, 30167 Hannover, Germany
autor
  • Institute for Structural and Computational Mechanics, University of Hannover, Appelstr. 9A, 30167 Hannover, Germany
autor
  • Institute for Structural and Computational Mechanics, University of Hannover, Appelstr. 9A, 30167 Hannover, Germany
Bibliografia
  • [1] M. Ainsworth, J.T. Oden. A unified approach to a posteriori error estimation based on element residual methods. Numer. Math., 65: 23-50, 1993.
  • [2] M. Ainsworth, J.T. Oden. A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Engrg., 142: 1-88, 1997.
  • [3] A.M. Arthurs. Complementary Variational Principles. Clarendon Press, Oxford, 1970.
  • [4] R.E. Bank, A. Weiser. Some a posteriori error estimators for elliptic partial differential equations. Math. Comp., 44(170): 283-301, 1985.
  • [5] M.Sh. Birman. Variational methods of solution of boundary problems analogous to the method of Trefftz (in Russian). Vestnik Leningrad. Univ./ Serija Matematiki, Mechaniki i Astronomii, 13: 69-89, 1956.
  • [6] S.C. Brenner, L.R. Scott. The Mathematical Theory of Finite Element Methods. Springer, New York, 1994.
  • [7] U. Brink, M. Kreienmeyer, K. Peters, E. Stein. Aspects of Trefftz' method in BEM and FEM and their coupling. Comput. Assist. Mech. Eng. Sci., 4: 327-344, 1997.
  • [8] U. Brink, E. Stein. A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems. Comput. Methods Appl. Mech. Engrg., 161: 77-101, 1998.
  • [9] U. Brink, E.P. Stephan. Implicit residual error estimators for the coupling of finite elements and boundary elements. Math. Meth. Appl. Sci., 22: 923-936, 1999.
  • [10] H. Bufler, E. Stein. Zur Plattenberechnung mittels finiter Elemente. Ing. Archiv, 39: 248-260, 1970.
  • [11] P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, 1978.
  • [12] P. Cooperman. An extension of the method of Trefftz for finding local bounds on the solutions of boundary value problems, and on their derivatives. Quart. Appl. Math., 10: 359-373, 1953.
  • [13] J.A.T. Freitas, J.P.M. Almeida, E.M.B.R. Pereira. Non-conventional formulations for the finite element method. Struct. Eng. Mech., 4: 655-678, 1996.
  • [14] W. Han. A posteriori error analysis for linearization of nonlinear elliptic problems and their discretizations. Math. Meth. Appl. Sci., 17: 487-508, 1994.
  • [15] I. Herrera. Trefftz method. In: C.A. Brebbia, ed., Topics in Boundary Element Research — Basic Principles and Applications, 225-253. Spinger, Berlin, 1984.
  • [16] S.M. Irons, O.C. Zienkiewicz. The isopararnetric finite element system — a new concept in finite element analysis. In: Proc. Conf. Recent Advances in Stress Analysis. Royal Aero Soc., 1968.
  • [17] W.G. Jin, Y.K. Cheung, 0.C. Zienkiewicz. Application of the Trefftz method in plane elasticity problems. Int. J. Numer. Methods Engrg., 30: 1147-1161, 1990.
  • [18] J. Jirousek. Basis for development of large finite elements locally satisfying all field equations. Comput. Methods Appl. Mech. Engrg., 14: 65-92, 1978.
  • [19] J. Jirousek, A. Venkatesh. A simple stress error estimator for hybrid-Trefftz p-version elements. Int. J. Numer. Methods Engrg., 28: 211-236, 1989.
  • [20] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge, 1987.
  • [21] D.W. Kelly. The self-equilibration of residuals and complementary a posteriori error estimates in the finite element method. Int. J. Numer. Methods Engrg., 20: 1491-1506, 1984.
  • [22] E. Kita, N. Kamiya. Trefftz method: An overwiew. Advance Engineering Software, 24: 3-12, 1995.
  • [23] P. Ladev&e, D. Leguillon. Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal., 20(3): 485-509, 1983.
  • [24] S.G. Mikhlin. Variational Methods in Mathematical Physics. Pergamon Press, Oxford, 1964.
  • [25] J.L. Nowinski. Applications of Functional Analysis in Engineering. Plenum Press, New York, 1981.
  • [26] J.T. Oden, L. Demkowicz, W. Rachowicz, T.A. Westermann. Toward a universal h-p adaptive finite element strategy. Part 2, A posteriori error estimation. Comput. Methods Appl. Mech. Engrg., 77: 113-180, 1989.
  • [27] S. Ohnimus. General computation of equilibrated boundary tractions in adaptive FEM. Submitted to Engrg. Comput., 1999.
  • [28] S. Ohnimus, E. Stein, E. Walhorn. Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems. Int. J. Numer. Methods Engrg., 2001 (in print).
  • [29] K. Peters, E. Stein, W. Wagner. A new boundary-type finite element for 2d- and 3d-elastic structures. Int. J. Numer. Methods Engrg., 37: 1009-1025, 1994.
  • [30] T.H.H. Pian. Derivation of element stiffness matrices by assumed stress distributions. AIAA J., 2: 1333-1336, 1964.
  • [31] W. Prager, J.L. Synge. Approximations in elasticity based on the concept of function space. Quart. Appl. Math., 5: 241-269, 1947.
  • [32] Q.H. Qin. Hybrid-Trefftz finite element method for Reissner plates on an elastic foundation. Comput. Methods Appl. Mech. Engrg., 122: 379-392, 1995.
  • [33] J.N. Reddy. Energy and Variational Methods in Applied Mechanics. John Wiley Sz Sons, New York, 1984.
  • [34] S.I. Repin, L.S. Xanthis. A posteriori error estimation for elasto-plastic problems based on duality theory. Comput. Methods Appl. Mech. Engrg., 138: 317-339, 1996.
  • [35] S.I. Repin, L.S. Xanthis. A posteriori error estimation for nonlinear variational problems. C. R. Acad. Sci. Paris S6r. I Math., 324: 1169-1174, 1997.
  • [36] G. Rieder. Iterationsverfahren und Operatorgleichungen in der Elastizitdtstheorie. Abh. Braunschweig. Wiss. Gesell., 14: 109-343, 1962.
  • [37] W. Ritz. fiber eine neue Methode zur Risung gewisser Variationsprobleme der mathematischen Physik. J. Reine Angew. Math., 135: 1-61, 1908.
  • [38] M. Riiter, E. Stein. Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity. Comput. Methods Appl. Mech. Engrg., 190: 519-541, 2000.
  • [39] E. Stein, R. Ahmad. An equilibrium method for stress calculation using finite element methods in solid- and structural-mechanics. Comput. Methods Appl. Mech. Engrg., 10: 175-198, 1977.
  • [40] E. Stein, S. Ohnimus. Coupled model- and solution-adaptivity in the finite-element method. Comput. Methods Appl. Mech. Engrg., 150: 327-350, 1997.
  • [41] E. Stein, S. Ohnimus. Anisotropic discretization-and model-error estimation in solid mechanics by local Neumann problems. Comput. Methods Appl. Mech. Engrg., 176: 363-385, 1999.
  • [42] J.L. Synge. The method of the hypercircle in function-space for boundary-value problems. Proc. Roy. Soc., A 191: 447-467, 1947.
  • [43] J.L. Synge. The method of the hypercircle in elasticity when body forces are present. Quart. Appl. Math., 6: 15-19, 1948.
  • [44] J.L. Synge. The Hypercircle in Mathematical Physics — A Method for the Approximate Solution of Boundary Value Problems. University Press, Cambridge, 1957.
  • [45] E. Trefftz. EM Gegenstiick zum Ritzschen Verfahren. In: Proceedings of the 2nd International Congress for Applied Mechanics, 131-138. Zfirich, 1926.
  • [46] W. Velte. Direkte Methoden der Variationsrechnung. B.G. Teubner, Stuttgart, 1976.
  • [47] W. Velte. Complementary Variational Principles. In: E. Stein, W.L. Wendland, eds., Finite Element and Boundary Element Techniques from Mathematical and Engineering Point of View, 1-32. Springer, Wien, 1988.
  • [48] H. Weyl. The method of orthogonal projection in potential theory. Duke Math. J., 7: 411-444, 1940.
  • [49] S. Zaremba. Sur le principe de minimum. Bull. Int. Acad. Sci. Cracovie, Cl. Sci. Math. Nat., 7: 197-264, 1909.
  • [50] S. Zaremba. Sur un problème toujours possible comprenant, d titre de cas particuliers, le problème de Dirichlet et celni de Neumann. J. Math. Pures et Appl., 6: 127-163, 1927.
  • [51] A.P. Zieliński, O.C. Zienkiewicz. Generalized finite element analysis with T-complete boundary solution functions. Int. J. Numer. Methods Engrg., 21: 509-528, 1985.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0006-0053
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.