PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Trefftz-polynomial reciprocity based FE formulations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Workshop on the Trefftz Method (2 ; 1999 ; Lisbon, Portugal)
Języki publikacji
EN
Abstrakty
EN
The paper contains a general procedure for obtaining of Trefftz polynomials of arbitrary order for 2D or 3D problems by numerical or analytical way. Using Trefftz polynomials for displacement and tractions the unknown displacements and tractions are related by non-singular boundary integral equations. For a multi-domain (element) formulation we suppose the displacements to be continuous between the sub-domains and the tractions are connected in a weak (integral) sense by a variational formulation of inter-element equilibrium. The stiffness matrix defined in this way is nonsymmetric and positive semi-definite. The finite elements can be combined with other well known elements. The form of the elements can be, however, more general (the multiply connected form of the element is possible, transition elements which can be connected to more elements along one side are available). It is also very easy and simply possible to assess the local errors of the solution from the traction incompatibilities (the inter-element equilibrium, which is satisfied in a weak sense only, is the only incompatibility in the solution of the linear problem). The stress smoothing is a very useful tool in the post-processing stage. It can improve the accuracy of the stress field by even one order or more comparing to the simple averaging, if the stress gradients in the element are large. Also the convergence of the so obtained stress field increases. The examples with high order gradient field and crack modelling document the efficiency of this FEM formulation. The extension to the solution of other field problems is very simple.
Słowa kluczowe
Rocznik
Strony
385--395
Opis fizyczny
Bibliogr. 31 poz., wykr.
Twórcy
autor
  • University of Žilina, Faculty of Mechanical Engineering, Vel'ky Diel, SK-010-26 Žilina, Slovakia
autor
  • University of Žilina, Faculty of Mechanical Engineering, Vel'ky Diel, SK-010-26 Žilina, Slovakia
autor
  • University of Žilina, Faculty of Mechanical Engineering, Vel'ky Diel, SK-010-26 Žilina, Slovakia
Bibliografia
  • [1] J. Bala, J. Sládek, V. Sládek, Stress Analysis by Boundary Element Methods, Elsevier, (1989).
  • [2] K.-J. Bathe, Finite Element Procedures, Prentice Hall, Englewood Clifs, N.J., 1996.
  • [3] R. Bausinger, G. Kuhn, The boundary element method (in German), Expert Verlag, Germany, (1987).
  • [4] T. Blacker, and T. Belytschko, Superconvergent patch recovery with equilibrium and conjoint interpolant enhancement, Int. J. Num. Meth. Eng., 37, 517-536 (1994).
  • [5] M. Bonnet, B. Burgadt, A. Le Van, A regularized direct symmetric variational BIE formulation for three-dimensional elastoplasticity, Proc. of the Symposium on Advanced Mathematical and Computational Mechanics Aspects of the Boundary Element Method, Cracow, pp.6-7, 1999.
  • [6] M. Bonnet, M. Guiggiani, A general algorithm to the direct numerical evaluation of element integrals in the 2D symmetric Galerkin BEM, as [20], pp.8-9.
  • [7] C.A. Brebbia, The boundary element method for engineers, J. Wiley, (1978).
  • [8] A. Carini, A. Salvadori, Implementation of a symmetric Galerkin boundary element method in quasi-brittle fracture mechanics, as [20], pp.16-17.
  • [9] Y.K. Cheung, W.G. Jin, O.C. Zienkiewicz, Direct solution procedure for solution of harmonic problems using complete, non-singular, Trefftz functions, Commun. in Appl. Numer. Methods, 5, 159-169 (1989).
  • [10] Y.K. Cheung, W.G. Jin, O.C. Zienkiewicz, Solution of Helmholtz equation by Trefftz method, Int. J. Numer. Meth. Engng., 32, 63-78 (1991).
  • [11] E. Hinton, J. Campbell, Local and global smoothing of discontinuous finite element functions using a least square method potential problem,Int. J. Numer. Meth. Eng. & Mach., 8, 461-480 (1974).
  • [12] J. Jirousek, A. Wróblewski, T-elements: State of the art and future trends, Archives of Comput. Mech., 3, 323-434 (1996).
  • [13] A. Karageorghis, G. Fairweather, The method of fundamental solutions for axisymmertic potential problems, Int. J. Numer. Methods Engng., to appear.
  • [14] E. Kita, N. Kamiya, Y. Ikeda, A new boundary-type scheme for sensitivity analysis using Trefftz formulation, Finite Elements in Analysis and Design, 21, 301-317 (1996).
  • [15] E. Kita, N. Kamiya, Y. Ikeda, Application of the Trefftz method to sensitivity analysis of a three-dimensional potential problem,Mech. Struct. & Mach., 24, 295-311 (1996).
  • [16] V. Kompiš, Finite element satisfying all governing equations inside the element, Computers & Structures, 4, 273-278, (1994).
  • [17] V. Kompiš, L’. Fraštia, Polynomial representation of hybrid ¯nite elements, Computer Assis. Mech. in Eng. Sci., 4, 521-532 (1997).
  • [18] V. Kompiš, L’. Fraštia, M. Kaukič, P. Novák, Accuracy of direct Trefftz FE form, Computational Mechanics, New Trends and Applications, CD-ROM, CIMNE Barcelona, 1998.
  • [19] V. Kompiš, L. Jakubovičová, Errors in modelling high order gradient fields using isoparametric and reciprocity based FEM, to be published.
  • [20] V. Kompiš, M. Kaukič, M. Žmindák, Modelling of local effects by hybrid-displacement FE, J. Comput. Appl. Math., 63, 265-269 (1995).
  • [21] V. Kompiš, J. Oravec, J. Búry, Reciprocity based FEM, Mechanical Engineering, 50, 187-202, No. 3., 1999.
  • [22] V. Kompiš,·M. Žmindák, L. Jakubovičová, Error estimation in multy-domain BEM (Reciprocity based FEM, Proc. ECCM '99, European Conference on Computational Mechanics, CD-ROM, München, Germany, 1999.
  • [23] G. Maier, G. Novati, A. Frangi, Some recent developments in the symmetric Galerkin boundary element method, as [20], pp.42-43.
  • [24] Q. Niu, M.S. Shephard, Superconvergent extraction techniques for finite element analysis, Int. J. Num. Meth. Eng., 36, 811-836 (1993).
  • [25] A.C.A. Ramsay, E.A.W. Maunder, Effective error estimation from continuous, boundary admissible estimated stress fields, Comp. & Struct., 61, 331-343 (1996).
  • [26] H. Tada, P. Paris, G. Irwin, The stress analysis of cracks handbook, Del Research Corporation, Hellertown, PA, 1973.
  • [27] E. Trefftz Ein Gegenstück zum Ritzschen Verfahren, Proc. 2nd Int. Congress of Applied Mechanics, Zürich, 1926.
  • [28] N.E. Wiberg, Superconvergent patch recovery: A key to quality assessed FE solutions, Advan. Eng. Software, 28, 85-95 (1997).
  • [29] A.P. Zieliński, A.P., On trial functions applied in the generalised Trefftz method, Advances in Eng. Software, 24, 147-155 (1995).
  • [30] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, 4th Edition, Vol I, McGraw Hill 1989, Vol. II McGraw Hill 1991.
  • [31] O.C. Zienkiewicz, J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis potential problem,Int. J. Numer. Meth. Eng. & Mach., 24, 337-357 (1987).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0006-0050
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.