Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The problem of instability and strain localization in a hardening non-associative Drucker-Prager plasticity theory is analyzed. The classical and gradient-enhanced versions of the theory are reviewed and instability indicators are summarized. The regularizing properties of the gradient-enhancement are shown. The classical plane strain biaxial compression test is analyzed in terms of the analytical prediction of ellipticity loss and numerical simulation of the process of shear band formation and evolution. The influence of material model parameters, especially of the degree of non-associativity and the gradient influence,
Słowa kluczowe
Rocznik
Tom
Strony
183--204
Opis fizyczny
Bibliogr. 37 poz, wykr.
Twórcy
autor
- Faculty of Civil Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155, Cracow, Poland
autor
- Faculty of Civil Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155, Cracow, Poland
Bibliografia
- [1] DIANA Finite Element Analysis. User's Manual, Release 6.1. Technical report, TNO Building and Construction Research, Delft, 1996.
- [2] J.P. Bardet. Finite element analysis of plane strain bifurcation within compressible solids. Comp. and Struct., 36(6): 993-1007, 1990.
- [3] J.P. Bardet. Analytical solutions for the plane-strain bifurcation of compressible solids. ASME J. Appl. Mech., 58: 651-657, 1991.
- [4] J.P. Bardet. Plane-strain instability of saturated porous media. ASCE J. Eng. Mech., 121(6): 717-724, 1995.
- [5] Z.P. Bażant and G. Pijaudier-Cabot. Nonlocal continuum damage, localization instability and convergence. ASME J. Appl. Mech., 55: 287-293, 1988.
- [6] R. de Borst. Non-linear analysis of frictional materials. Ph.D. dissertation, Delft University of Technology, Delft, 1986. 204 A. Stankiewicz and J. Pamin Computer Assisted Mechanics and Engineering Sciences, 8: 205-207, 2001.
- [7] R. de Borst. Bifurcations in finite element models with a nonassociated flow law. Int. J. Num. Anal. Meth. Geomech., 12: 99-116, 1988.
- [8] R. de Borst and H.-B. Miihlhaus. Gradient-dependent plasticity: Formulation and algorithmic aspects. Int. J. Num. Meth. Eng., 35: 521-539, 1992.
- [9] R. de Borst and J. Pamin. Some novel developments in finite element procedures for gradient-dependent plasticity. Int. J. Num. Meth. Eng., 39: 2477-2505, 1996.
- [10] R. de Borst, L.J. Sluys, H.-B. Miihlhaus, and J. Pamin. Fundamental issues in finite element analyses of localization of deformation. Eng. Comput., 10: 99-121, 1993.
- [11] R. de Borst and E. van der Giessen, eds. Material Instabilities in Solids. IUTAM, Chichester, John Wiley & Sons, 1998.
- [12] J. Desrues. Localisation patterns in ductile and brittle geomaterials. In: [111, pp. 137-158.
- [13] R. Hill. A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids, 6: 236-249, 1958.
- [14] T. Lodygowski. Theoretical and numerical aspects of plastic strain localization. Technical Report 312, Poznań University of Technology, Poznań, 1996.
- [15] G. Maier and T. Hueckel. Nonassociated and coupled flow rules of elastoplasticity for rock-like materials. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 16: 77-92, 1979.
- [16] H.-B. Miihlhaus and E.C. Aifantis. A variational principle for gradient plasticity. Int. J. Sol. Struct., 28: 845-857, 1991.
- [17] H.-B. Miihlhaus and I. Vardoulakis. The thickness of shear bands in granular materials. Geotechnique, 37: 271-283, 1987.
- [18] M.K. Neilsen and H.L. Schreyer. Bifurcations in elastic-plastic materials. Int. J. Sol. Struct., 30: 521-544, 1993.
- [19] M. Ortiz, Y. Leroy, and A. Needleman. A finite element method for localized failure analysis. Comp. Meth. Appl. Mech. Eng., 61: 189-214, 1987.
- [20] N.S. Ottosen and K. Runesson. Properties of discontinuous bifurcation solutions in elasto-plasticity. Int. J. Sol. Struct., 27(4): 401-421, 1991.
- [21] J. Pamin. Gradient-Dependent Plasticity in Numerical Simulation of Localization Phenomena. Ph.D. dissertation, Delft University of Technology, Delft, 1994.
- [22] J. Pamin and R. de Borst. A gradient plasticity approach to finite element predictions of soil instability. Arch. Mech., 47: 353-377, 1995.
- [23] B. Raniecki and O.T. Bruhns. Bounds to bifurcation stresses in solids with non-associated plastic flow law with finite strain. J. Mech. Phys. Solids, 29(2): 153-172, 1981.
- [24] J.W. Rudnicki and J.R. Rice. Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids, 23: 371-394, 1975.
- [25] K. Runesson and Z. Mróz. A note on nonassociated plastic flow rules. Int. J. Plasticity, 5: 639-658, 1989.
- [26] K. Runesson, N.S. Ottosen, and D. Perić. Discontinuous bifurcations of elastic-plastic solutions at plane stress and plane strain. Int. J. Plasticity, 7: 99-121, 1989.
- [27] B.A. Schrefler, L. Sanavia, and C.E. Majorana. A multiphase medium model for localisation and postlocalisation simulation in geomechanics. Mech. Cohes. frict. Mater., 1: 95-114, 1996.
- [28] L.J. Sluys. Wave Propagation, Localization and Dispersion in Softening Solids. Ph.D. dissertation, Delft University of Technology, Delft, 1992.
- [29] H. van der Veen. The Significance and Use of Eigenvalues and Eigenvectors in the Numerical Analysis of Elasto-Plastic Soils. Ph.D. dissertation, Delft University of Technology, Delft, 1998.
- [30] I. Vardoulakis and E.0 Aifantis. Gradient dependent dilatancy and its implications in shear banding and liquefaction. Ing.-Arch., 59: 197-208, 1989.
- [31] I. Vardoulakis and E.C. Aifantis. A gradient flow theory of plasticity for granular materials. Acta Mechanica, 87: 197-217, 1991.
- [32] I. Vardoulakis and J. Sulem. Bifurcation Analysis in Geomechanics. Blackie Academic & Professional, London, 1995.
- [33] P.A. Vermeer and R. de Borst. Non-associated plasticity for soils, concrete and rock. Heron, 29(3), 1984.
- [34] K. Wiliam and M. Iordache. Fundamental aspects of failure modes in brittle solids. In: Z.P. Bażant et al., eds., Fracture and Damage in Quasibrittle Structures, pp. 53-66. London, ES.LFN Spon, 1994.
- [35] K.J. Willam and A. Dietsche. Fundamental aspects of strain-softening descriptions. In: Z.P. Bażant, ed., Fracture Mechanics of Concrete Structures, pp. 227-238. London-New York, FRAMCOS, Elsevier Applied Science, 1992.
- [36] K.J. Wiliam and G. Etse. Failure assessment of the extended Leon model for plain concrete. In: N. Bićanić et al., eds., Proc. Second mt. Conf. Computer Aided Analysis and Design of Concrete Structures, pp. 851-870. Swansea, Pineridge Press, 1990.
- [37] T. Yoshida, F. Tatsuoka, M.S.A. Siddiquee, Y. Kamegai, and C.-S. Park. Shear banding in sands observed in plane strain compression. In: R. Chambon, J. Desrues, I. Vardoulakis, eds., Localisation and bifurcation theory for soils and rocks, pp. 165-179. Rotterdam/Brookfield, A.A. Balkema, 1994. Calendar of events February 12-15, 2001: Zilrich, Switzerland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0006-0038