PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the boundary crises of chaotic attractors

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Polish Conference on Computer methods in mechanics ; (14 ; 26-28.05.1999 ; Rzeszów, Poland
Języki publikacji
EN
Abstrakty
EN
In nonlinear dissipative mechanical systems, bifurcations of chaotic attractors called boundary crises appear to be the cause of most sudden changes in chaotic dynamics. They result in a sudden loss of stability of chaotic attractor, together with destruction of its basin of attraction and its disappearance from the phase portrait. Chaotic attractor is destroyed in the collision with an unstable orbit (destroyer saddle) sitting on its basin boundary, and the structure of the saddle defines the type of the crisis - regular or chaotic one. In the paper we exemplify both types of the boundary crisis by using a mathematical model of the symmetric twin-well Duffing oscillator; we consider the regular boundary crisis of the cross-well chaotic attractor, and the chaotic boundary crisis of the single-well chaotic attractor. Our numerical analysis makes use of the underlying topological structure of the phase space, namely the geometry of relevant invariant manifolds, as well as the structure of basins of attraction of the coexisting attractors. The study allows us to establish some relevant relations between the properties of the regular and chaotic boundary crisis, and to outline the differences that result mainly in the post-crisis
Rocznik
Strony
743--755
Opis fizyczny
Bibliogr. 14 poz., rys., wykr.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Świętokrzyska 21, 00-049 Warszawa, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Świętokrzyska 21, 00-049 Warszawa, Poland
Bibliografia
  • [1] M. J. Feigenbaum. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys., 19: 25-52, 1978.
  • [2] C. Grebogi, E. Ott, J. A. Yorke. Crises, sudden changes in chaotic attractors and transient chaos. Physica, D7: 181-200, 1983.
  • [3] AL. Katz, E. H. Dowell. From single-well chaos to cross-well chaos: a detailed explanation in terms of manifold intersections. Int. J. Bifurcation and Chaos, 4(4): 933-941, 1994.
  • [4] H. E. Nusse, J. A. Yorke. Dynamics: Numerical Explorations. Springer-Verlag, New York, 1998.
  • [5] E. Ott. Chaos in Dynamical Systems. Cambridge University Press, Cambridge, 1993.
  • [6] M. S. Soliman, J. M. T. Thompson. Basin organization prior to a tangled saddle-node bifurcation. Int. J. Bifurcation and Chaos, 1(1): 107-118, 1991.
  • [7] J. C. Sommerer, C. Grebogi. Determination of crisis parameter values by direct observation of manifold tangencies. Int. J. Bifurcation and Chaos, 2(2): 383-396, 1992.
  • [8] H. B. Stewart, Y. Ueda. Catastrophes with indeterminate outcome. Proc. Roy. Soc. Lond., A432: 113-123, 1991.
  • [9] W. Szemplińska-Stupnicka, K. L. Janicki. Basin boundary bifurcations and boundary crisis in the twin-well Duffing oscillator: scenarios related to the saddle of the large resonant orbit. Int. J. Bifurcation and Chaos, 7(1): 129-146, 1997.
  • [10] W. Szemplińska-Stupnicka, E. Tyrkiel. Sequences of global bifurcations and the related outcomes after crisis of the resonant attractor in a nonlinear oscillator. Int. J. Bifurcation and Chaos, 7(11): 2437-2457, 1997.
  • [11] W. Szemplińska-Stupnicka, A. Zubrzycki, E. Tyrkiel. Properties of chaotic and regular boundary crisis in dissipative driven nonlinear oscillators. Nonlinear Dynamics, 19: 19-36, 1999.
  • [12] W. Szemplińska-Stupnicka, E. Tyrkiel, A. Zubrzycki. Chaotic oscillations in a model of suspended elastic cable under planar excitation. Computer Assisted Mech. Engng. Sci., 6: 217-229, 1999.
  • [13] J. M. T. Thompson, H.B. Stewart, Y. Ueda. Safe, explosive and dangerous bifurcations in dissipative dynamical systems. Phys. Rev. E 49(2): 1019-1027, 1994.
  • [14] Y. Ueda, S. Yoshida, H. B. Stewart, J. M. T. Thompson. Basin explosions and escape phenomena in the twin-well Duffing oscillator: Compound global bifurcations organizing behavior. Phil. Rans. Roy. Soc. London A332: 169-186, 1990.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0005-0048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.