PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chaotic oscillations in a model of suspended elastic cable under planar excitation

Wybrane pełne teksty z tego czasopisma
Języki publikacji
EN
Abstrakty
EN
The single mode equation of motion of a suspended elastic cable under planar excitation is considered, and numerical exploration is focused on the chaotic oscillations which occur in a certain domain of system control parameters. Bifurcations of the subharmonic resonance oscillation and their evolution into chaotic attractor are studied. Then the global bifurcation theory is applied to determine the critical system parameters for which the chaotic attractor undergoes the subduction destruction in the ``boundary crisis'' scenario. The post-crisis transient motion, which in this case becomes the generic long-lasting chaotic system response, is also studied.
Rocznik
Strony
217--229
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Świętokrzyska 21, 00- 049 Warszawa, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Świętokrzyska 21, 00- 049 Warszawa, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Świętokrzyska 21, 00- 049 Warszawa, Poland
Bibliografia
  • [1] F. Benedettini and G. Rega, Non-linear dynamics of elastic cable under planar excitation. Int. J. Non-Linear Mechanics, 22(6): 497-509, 1987.
  • [2] F. Benedettini and G. Rega, Numerical simulations of chaotic dynamics in a model of an elastic cable, Nonlinear Dynamics, 1: 23-38, 1990.
  • [3] M.J. Feigenbaum, Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19: 25-52, 1978.
  • [4] C. Grebogi, E. Ott and J.A. Yorke, Chaotic attractors in crises. Phys. Rev. Letters, 48: 1507-1510, 1982.
  • [5] C. Grebogi, E. Ott and J.A. Yorke, Crises, sudden changes in chaotic attractors and transient chaos. Physica D7: 181-200, 1983.
  • [6] J. Guckenheimer and P.J. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, New York, 1983.
  • [7] Ch. Hayashi, Nonlinear Oscillations in Physical Systems. Princeton University Press, Princeton, N.J., 1985.
  • [8] A.L. Katz and E.H. Dowell, From single well chaos to cross well chaos: a detailed explanation in terms of manifold intersections. Int. J. Bifurcation and Chaos, 4(4): 933-941, 1994.
  • [9] H.E. Nusse and J.A. Yorke, Dynamics: Numerical Explorations. Springer-Verlag, New York, 1994.
  • [10] E. Ott, Chaos in Dynamical Systems. Cambridge University Press, Cambridge, 1993.
  • [11] G. Rega, A. Salvatori and F. Benedettini, Numerical and geometrical analysis of bifurcations and chaos for an asymmetrical elastic nonlinear oscillator. Nonlinear Dynamics, 7: 249-272, 1995.
  • [12] G. Rega and A. Salvatori, Bifurcation structure at 1/3 subharmonic resonance in an asymmetric nonlinear elastic oscillator. Int. J. Bifurcation and Chaos, 6(8): 1529-1546, 1996.
  • [13] J.C. Sommerer and C. Grebogi, Determination of crisis parameters values by direct observation of manifold tangencies. Int. J. Bifurcation and Chaos, 2(2): 383-396, 1992.
  • [14] W. Szemplińska-Stupnicka, Secondary resonances and approximate models of routes to chaotic motions in non- linear oscillators. J. Sound and Vibrations, 113: 155-172, 1987.
  • [15] W. Szemplińska-Stupnicka, The Behavior of Nonlinear Vibrating Systems; vol. I - Fundamental Concepts and Methods: Applications to Single-Degree-of-Freedom Systems, Kluwer Academic Publishers, Dordrecht-Boston- London, 1990.
  • [16] W. Szemplińska-Stupnicka, The approximate analytical methods in the study of transition to chaotic motion in nonlinear oscillators. In: W. Szemplińska-Stupnicka and H. Troger, eds., Engineering Applications of Dynamics of Chaos, Springer Verlag, Wien, 1991.
  • [17] W. Szemplińska-Stupnicka and J. Bajkowski, The 1/2 subharmonic resonance and its transition to chaotic motion in a nonlinear oscillator. Int. J. Non-Linear Mechanics, 21(5): 401-419, 1986.
  • [18] W. Szemplińska-Stupnicka, E. Tyrkiel and A. Zubrzycki, Criteria for chaotic transient oscillations in a model of driven buckled beams. Computer Assisted Mechanics and Engineering Sciences (in print), 1999.
  • [19] Y. Ueda, Explosions of strange attractors exhibited by Duffing's equation. Annals of the New York Academy of Sciences, 357: 422-433, 1980.
  • [20] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag, New York, 1990.
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0003-0094