PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Localization phenomena in thermo-viscoplastic flow processes under cyclic dynamic loadings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of the paper is the investigation of localization phenomena in thermo-viscoplastic flow processes under cyclic dynamic loadings. Recent experimental observations for cycle fatigue damage mechanics at high temperature and dynamic loadings of metals suggest that the intrinsic microdamage process does very much dependent on the strain rate and the wave shape effects and is mostly developed in the regions where the plastic deformation is localized. The microdamage kinetics interacts with thermal and load changes to make failure of solids a highly rate, temperature and history dependent, nonlinear process. A general constitutive model of elasto-viscoplastic damaged polycrystalline solids is developed within the thermodynamic framework of the rate type covariance structure with finite set of the internal state variables. A set of the internal state variables is assumed and interpreted such that the theory developed takes account of the effects as follows: (i) plastic non-normality; (ii) plastic strain induced anisotropy (kinematic hardening); (iii) softening generated by microdamage mechanisms (nucleation, growth and coalescence of microcracks); (iv) thermomechanical coupling (thermal plastic softening and thermal expansion); (v) rate sensitivity; (vi) plastic spin. To describe suitably the time and temperature dependent effects observed experimentally and the accumulation of the plastic deformation and damage during dynamic cyclic loading process the kinetics of microdamage and the kinematic hardening law have been modified. The relaxation time is used as a regularization parameter. By assuming that the relaxation time tends to zero, the rate independent elastic-plastic response can be obtained. The viscoplastic regularization procedure assures the stable integration algorithm by using the finite difference method. Particular attention is focused on the well-posedness of the evolution problem (the initial-boundary value problem) as well as on its numerical solutions. The Lax-Richtmyer equivalence theorem is formulated and conditions under which this theory is valid are examined. Utilizing the finite difference method for regularized elasto-viscoplastic model, the numerical investigation of the three-dimensional dynamic adiabatic deformation in a particular body under cyclic loading condition is presented. Particular examples have been considered, namely dynamic, adiabatic and isothermal, cyclic loading processes for a thin steel plate with small rectangular hole located in the centre. To the upper edge of the plate the normal and parallel displacements are applied while the lower edge is supported rigidly. Both these displacements change in time cyclically. Small two asymmetric regions which undergo significant deformations and temperature rise have been determined. Their evolution until occurrence of final fracture has been simulated. The accumulation of damage and equivalent plastic deformation on each considered cycle has been obtained. It has been found that this accumulation distinctly depends on the wave shape of the assumed loading cycle.
Rocznik
Strony
117--160
Opis fizyczny
Bibliogr. 73 poz., wykr.
Twórcy
autor
  • Military University of Technology [Wojskowa Akademia Techniczna], ul. Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Polish Academy of Science, Swiętokrzyska 21, 00-049 Warszawa, Poland
Bibliografia
  • [1] R. Abraham, J.E. Marsden, T. Ratiu. Manifolds, Tensor Analysis and Applications. Springer, Berlin, 1988.
  • [2] A. Agah-Tehrani, E.H. Lee, R.L. Malett, E.T. Onat. The theory of elastic-plastic deformation at finite strain with induced anisotropy modelled isotropic-kinematic hardening. J. Mech. Phys. Solids, 35: 43-60, 1987.
  • [3] P.J. Armstrong, C.O. Frederick. A mathematical representation of the multiaxial Bauschinger effect. In: CEGB Report RD/B/N731, Central Electricity Generating Board, 1966.
  • [4] F. Auricchio, R.L. Taylor, J. Lubliner. Application of a return map algorithm to plasticity models. In: D.R.J. Owen and E. (Nate, eds., COMPLAS Computational Plasticity: Fundamentals and Applications, 2229-2248. Barcelona, 1992.
  • [5] F. Auricchio, R.L. Taylor. Two material models for cyclic plasticity models: Nonlinear kinematic hardening and generalized plasticity. Int. J. Plasticity, 11: 65-98, 1995.
  • [6] J.L. Chaboche. Time-independent constitutive theories for cyclic plasticity. Int. J. Plasticity, 2: 149-188.
  • [7] A.K. Chakrabarti, J.W. Spretnak. Instability of plastic flow in the direction of pure shear. Metallurgical Transactions, 6A: 733-747, 1986.
  • [8] B.D. Coleman, W. Noll. The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal., 13: 167-178, 1963.
  • [9] R. Courant, K.O. Friedrichs, H. Lewy. Uber die partiellen differenzgleichungen der mathematischen physik. Math. Ann., 100: 32-74, 1928.
  • [10] D.R. Curran, L. Seaman, D.A. Shockey. Dynamic failure of solids. Physics Reports, 147: 253-388, 1987.
  • [11] Y.F. Dafalias. Corotational rates for kinematic hardening at large plastic deformations. J. Appl. Mech., 50: 561-565, 1983.
  • [12] Y.F. Dafalias. The plastic spin concept and simple illustration of its rule in final plastic transformations. Mech. Mater., 3: 223, 1984.
  • [13] Y.F. Dafalias. The plastic spin. J. Appl. Mech., 52: 865-871, 1985.
  • [14] Y.F. Dafalias. Issues on the constitutive formulation at large elastoplastic deformations, Part 1: Kinematics. Acta Mechanica, 69: 119, 1987.
  • [15] Y.F. Dafalias. Issues on the constitutive formulation at large elastoplastic deformations, Part 2: Kinetics. Acta Mechanica, 73: 121, 1988.
  • [16] Y.F. Dafalias, E.P. Popov. A model of nonlinearly hardening materials for complex loading. Acta Mech., 21: 173-192, 1975.
  • [17] Y.F. Dafalias, E.P. Popov. Plastic internal variable formalism of cyclic plasticity. J. Appl. Mech., 43: 645-651, 1976.
  • [18] R. Dautray, J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 6. Evolution Problems II. Springer, Berlin, 1993.
  • [19] W. Dornowski. An algorithm of numerical integration for thermo-elasto-viscoplastic constitutive equations. Biul. WAT (submitted for publication), 1999.
  • [20] W. Dornowski, P. Perzyna. Constitutive modelling of inelastic solids for plastic flow processes under cyclic dynamic loadings. ASME J. Eng. Materials and Technology, 121: 210-220, 1999.
  • [21] W. Dornowski, P. Perzyna. Numerical solutions of thermo-viscoplastic flow processes under cyclic dynamic loadings. In: D. Weichert, ed., Proc. Euromech Colloquium 383, Inelastic Analysis of Structures under Variable Loads: Theory and Engineering Applications. Kluwer Academic Publishers, (in print), 1999.
  • [22] W. Dornowski, P. Perzyna. Analysis of the influence of various effects on cycle fatigue damage in dynamic processes. Int. J. Plasticity (submitted for publication), 1999.
  • [23] D.R. Durran. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer, New York, 1999.
  • [24] M.K. Duszek, P. Perzyna. On combined isotropic and kinematic hardening effects in plastic flow processes. Int. J. Plasticity, 7: 351-363, 1991.
  • [25] M.K. Duszek, P. Perzyna. The localization of plastic deformation in thermoplastic solids. Int. J. Solids Structures, 27: 1419-1443, 1991.
  • [26] M.K. Duszek-Perzyna, P. Perzyna. Analysis of the influence of different effects on criteria for adiabatic shear band localization in inelastic solids. In: R.C. Batra, H.M. Zbib, eds., Material Instabilities: Theory and Applications. ASME Congress, Chicago, 9-11 November 1994, AMD-Vol. 183/MD-Vol.50, 59-85. ASME, New York, 1994.
  • [27] M.K. Duszek-Perzyna, P. Perzyna. Analysis of anisotropy and plastic spin on localization phenomena. Arch. Appl. Mechanics, 68: 352-374, 1998.
  • [28] B. Gustafsson, H.O. Kreiss, J. Oliger. Time Dependent Problems and Difference Methods. John Wiley, New York, 1995.
  • [29] B. Halphen. Sur le champ des vitesses en thermoplasticitć finie. Int. J. Solids Structures, 11: 947, 1975.
  • [30] T.J.R. Hughes, T. Kato, J.E. Marsden. Well-posed quasilinear second order hyperbolic system with application to nonlinear elastodynamics and general relativity. Arch. Rat. Mech. Anal., 63: 273-294, 1977.
  • [31] I.R. Ionescu, M. Sofonea. Functional and Numerical Methods in Viscoplasticity. Oxford, 1993.
  • [32] G. Jaumann. Geschlossenes System physikalischer und chemischer Differentialgesetze. Sitzgsber. Akad. Wiss. Wien (IIa), 120: 385-530, 1911.
  • [33] J.N. Johnson. Dynamic fracture and spallation in ductile solids. J. Appl. Phys., 52: 2812-2825, 1981.
  • [34] A.S. Khan, P. Cheng. Study of three elastic-plastic constitutive models by non-proportional finite deformations of OFHC copper. Int. J. Plasticity, 6: 737-759, 1996.
  • [35] J. Kratochvil. Finite-strain theory of crystalline elastic-inelastic materials. J. Appl. Phys., 42: 1104, 1971.
  • [36] B. Loret. On the effect of plastic rotation in the finite deformation of anisotropic elastoplastic materials. Mech. Mater., 2: 287-304, 1983.
  • [37] B. Loret. On the effects of plastic rotation on the localization of anisotropic elastoplastic solids. In: J. Salencon et al., eds. Plastic Instability, 89-100. Presses Ponts at Chausees, Paris, 1985.
  • [38] T. Łodygowski, P. Perzyna. Localized fracture of inelastic polycrystalline solids under dynamic loading processes. Int. J. Damage Mechanics, 6: 364-407, 1997.
  • [39] T. Łodygowski, P. Perzyna. Numerical modelling of localized fracture of inelastic solids in dynamic loading processes. Int. J. Num. Meth. Engng., 40: 4137-4158, 1997.
  • [40] J. Mandel. Plasticit6 Classique et Viscoplasticite. CISM Lecture Notes No. 97, Udine, Springer-Verlag, Wien, 1971.
  • [41] J. Mandel. Equations constitutives et directeurs dans las milieux plastiques at viscoplastiques. Int. J. Solids Structures, 9: 725-740, 1973.
  • [42] J. Mandel. Dćfinition d'un repćre privilćgć pour l'etude des transformations an6lastiques du polycrystal. J. Mgc. Th60. Appl., 1: 7, 1982.
  • [43] J.E. Marsden, T.J.R. Hughes. Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs, New York, 1983.
  • [44] Z. Mróz. On the description of anisotropic workhardening. J. Mech. Phys. Solids, 15: 163-175, 1967.
  • [45] S. Nemat-Nasser. Phenomenological theories of elastoplasticity and strain localization at high strain rates. Appl. Mech. Rev., 45: S19-S45, 1992.
  • [46] J.A. Nemes, J. Eftis. Constitutive modelling on the dynamic fracture of smooth tensile bars. Int. J. Plasticity, 9:243-270, 1993.
  • [47] J. Oldroyd. On the formulation of rheological equations of state. Proc. Roy. Soc. (London), A 200: 523-541, 1950.
  • [48] P. Perzyna. The constitutive equations for rate sensitive plastic materials. Quart. Appl. Math., 20:321-332, 1963.
  • [49] P. Perzyna. Fundamental problems in viscoplasticity. Advances in Applied Mechanics, 9: 343-377, 1966.
  • [50] P. Perzyna. Thermodynamic theory of viscoplasticity. Advances in Applied Mechanics, 11: 313-354, 1971.
  • [51] P. Perzyna. Constitutive modelling of dissipative solids for postcritical behaviour and fracture. ASME J. Eng. Materials and Technology, 106: 410-419, 1984.
  • [52] P. Perzyna. Internal state variable description of dynamic fracture of ductile solids. Int. J. Solids Structures, 22: 797-818, 1986.
  • [53] P. Perzyna. Constitutive modelling for brittle dynamic fracture in dissipative solids. Arch. Mechanics, 38: 725-738, 1986.
  • [54] P. Perzyna. Instability phenomena and adiabatic shear band localization in thermoplastic flow processes. Acta Mechanica, 106:173-205, 1994.
  • [55] P. Perzyna. Interactions of elastic-viscoplastic waves and localization phenomena in solids. In: L.J. Wegner, F.R. Norwood, eds., Nonlinear Waves in Solids, Proc. IUTAM Symposium, August 15-20, 1993, Victoria, Canada, 114-121. ASME Book No. AMR 137, 1995.
  • [56] P. Perzyna, A. Drabik. Description of micro-damage process by porosity parameter for nonlinear viscoplasticity. Arch. Mechanics, 41: 895-908, 1989.
  • [57] P. Perzyna, A. Drabik. Micro-damage mechanism in adiabatic processes. Int. J. Plasticity (submitted for publication), 1999.
  • [58] W. Prager. The theory of plasticity: A survey of recent achievements. (J. Clayton Lecture), Proc. Inst. Mech. Eng., 169: 41-57, 1955.
  • [59] R.D. Richtmyer. Principles of Advance Mathematical Physics. Vol. I, Springer, New York, 1978.
  • [60] R.D. Richtmyer, K.W. Morton. Difference Methods for Initial-Value Problems. John Wiley, New York, 1967.
  • [61] M. Ristinmaa. Cyclic plasticity model using one yield surface only. Int. J. Plasticity, 11: 163-181, 1995.
  • [62] S. Shima, M. Oyane. Plasticity for porous solids. Int. J. Mech. Sci., 18: 285-291, 1976.
  • [63] D.A. Shockey, L. Seaman, D.R. Curran. The microstatistical fracture mechanics approach to dynamic fracture problem. Int. J. Fracture, 27: 145-157, 1985.
  • [64] D. Sidey, L.F. Coffin. Low-cycle fatigue damage mechamisms at high temperature. In: J.T. Fong, ed., Fatigue Mechanism, Proc. ASTM STP 675 Symposium, Kansas City, Mo., May 1978, 528-568. Baltimore, 1979.
  • [65] G. Strang, G.J. Fix. An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, 1973.
  • [66] C. Truesdell, W. Noll. The nonlinear field theories, 1-579. Handbuch der Physik, Band III/3. Springer, Berlin, 1965.
  • [67J E. Van der Giessen. Continuum models of large deformation plasticity, Part I: Large deformation plasticity and the concept of a natural reference state. Eur. J. Mech., A/Solids, 8: 15, 1989.
  • [68] E. Van der Giessen. Continuum models of large deformation plasticity, Part II: A kinematic hardening model and the concept of a plastically induced orientational structure. Eur. J. Mech., A/Solids, 8: 89, 1989.
  • [69] E. Van der Giessen. Micromechanical and thermodynamic aspects of the plastic spin. Int. J. Plasticity, 7: 365-386, 1991.
  • [70] J.-D. Wang, N. Ohno. Two equivalent forms of nonlinear kinematic hardening: application to nonisothermal plasticity. Int. J. Plasticity, 7: 637-650, 1991.
  • [71] S. Zaremba. Sur une forme perfectionn6e de la thćorie de la relaxation. Bull. Int. Acad. Sci. Cracovie, 594-614, 1903.
  • [72] S. Zaremba. Le principe des mouvements relatifs et les ćquations de la mćcanique physique. Bull. Int. Acad. Sci. Cracovie, 614-621, 1903.
  • [73] H. Ziegler. A modification of Prager's hardening rule. Quart. Appl. Math., 17: 55-65, 1959.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0003-0088
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.