Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The analysis of multi-leaf structures should be performed taking friction into account. The objectivity of friction law should be preserved because large deformation generally occurs. By use of the convected coordinate system, the objectivity can be preserved naturally. Therefore, in finite element analysis, the element local coordinate system can be used. However, when a contact point slides over the element boundary, a problem arises due to the discontinuity of the local coordinates between elements. In this work, an algorithm is proposed, i.e., the formulation is essentially based on the convected coordinate system while the sliding term is redefined as a spatial vector and is calculated in the reference configuration. Thus, the finite sliding due to large deformation can be treated without paying special attention to the limit of the local coordinate system. Two numerical examples including a simplified model of a leaf spring structure used in nuclear power plants are given.
Rocznik
Tom
Strony
53--67
Opis fizyczny
Bibliogr. 11 poz., rys., wykr.
Twórcy
autor
- Takasago R&D Center, Mitsubishi Heavy Industries, Ltd. 2-1-1, Shinhama Arai-Cho, Takasago, Hyogo Pref. 676-8686, Japan
autor
- Takasago R&D Center, Mitsubishi Heavy Industries, Ltd. 2-1-1, Shinhama Arai-Cho, Takasago, Hyogo Pref. 676-8686, Japan
autor
- Takasago R&D Center, Mitsubishi Heavy Industries, Ltd. 2-1-1, Shinhama Arai-Cho, Takasago, Hyogo Pref. 676-8686, Japan
autor
- The University of Tokyo, Japan
Bibliografia
- [1] K.-J. Bathe. Finite Element Procedures. Prentice Hall, 1996.
- [2] R. Buczkowski, M. Kleiber. Elasto-plastic interface model for 3D-frictional orthotropic contact problems. Int. J. Num. Meth. Engng., 40: 599-619, 1997.
- [3] T. Hisada. Foundation of Tensor Analysis for Nonlinear Finite Element Method (in Japanese). Maruzen, Tokyo, 1992.
- [4] N. Kikuchi, J.T. Oden. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia, 1988.
- [5] T.A. Laursen, J.C. Simo. A continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems. Int. J. Num. Meth. Engng., 36: 3451-3485, 1993.
- [6] H. Parisch, Ch. Lubbing. A formulation of arbitrarily shaped surface elements for three-dimensional large deformation contact with friction. Int. J. Num. Meth. Engng., 40: 3359-3383, 1997.
- [7] D. Peric, D.R.J. Owen. Computational model for 3-D contact problems with friction based on the penalty method. Int. J. Num. Meth. Engng., 35: 1289-1309, 1992.
- [8] J.C. Simo, T.A. Laursen. An augmented Lagrangian treatment of contact problems involving friction. Computers E4 Structures, 42: 97-116, 1992.
- [9] J.C. Simo, P. Wriggers, R.L. Taylor. A perturbed Lagrangian formulation for the finite element solution of contact problems. Comp. Meths. Appl. Mech. Engng., 50: 163-180, 1985.
- [10] Z.-H. Zhong. Finite Element Procedures for Contact-Impact Problems. Oxford University Press, New York, 1993.
- [11] Z.-H. Zhong, J. Mackerle. Static contact problems — a review. Engineering Computations, 9: 3-37, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0003-0083