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1 Introduction 

Stock index forecasting, or more generally financial instrument price forecasting, is 

a difficult task, but an encouraging prospect for profit. Many methods of data mining are 

used for this task. First of all, time series analysis [1], using among others the Auto-

Regressive Integrated Moving Average model (ARIMA) introduced by Box and Jenkins 

[2] and the autoregressive models with conditional heteroskedasticity (ARCH) introduced 

by Engel [3] and generalized by Bollerslev [4]. Many researchers claim to have good 

results using other methods, like neural networks [5], or supported vector machines SVM 

[6].  The approach proposed here, a linear classifier [7], is not commonly used for 

financial applications, but is widely used in pattern recognition.  

2 Prediction model 

The simplest form of this forecast is to determine whether the price of a stock index will 

rise or fall in a given time period, for example tomorrow. This kind of forecast can be 

treated as a problem of classification. We classify the current condition of the stock 

market into one of two classes: 

  ω+ 
 – in the next day the index will increase 

  ω- 
 – in the next day the index will fall 

Classification is made based on the current value of an n-dimensional features vector x[n]  

= [x1,...,xn]
T
. The components of the x[n] features vector are real values (xi∈ R

1
), with 

features such as: 

• historical changes in the value of the index, such as one-day, weekly or monthly 

changes 

• historical changes in the values of other financial instruments. 

For example, consider 10 indexes, and for each of these indexes three historical price 

changes (daily, weekly and monthly). We will obtain a features vector x[n] of size n = 30. 

The linear classifier LC(w[nk],θ) can be defined by the below decision (prediction) rule: 

 if    w[n]Tx[n]   ≥ θ, then x[n]  is located in class  ω+    (1) 

   if    w[n]
T
x[n]   < θ, then x[n]  is located in class  ω-

 , 

where w[n] = [w1,...,wn]
T is a vector of weights wi (wi∈ R

1
) and θ  is a threshold (θ ∈ R

1
). 



�

�

6���&����� !��I����
�����������

364 

The creation of predictive rules (1) requires the calculation of the parameter values w[n] 

and θ. The parameters w[n]  and θ  can be determined on the basis of learning sets G
+ 

 

and G- containing examples of feature vectors xj[n] from class ω+  (j ∈ J+) and from class 

ω - (j ∈ J-). 

 G
+ 

= {xj[n]: j ∈ J
+
} and  G

-  
= {xj[n]: j ∈ J

-
}. (2) 

Training set G+ contains examples of such conditions for stock indexes xj[n], which rose, 

while set G
- 
contains examples of such conditions xj[n], where the value of the predicted 

index fell the next day. 

      Definition 1: The sets G
+

 and G
- (1) are linearly separable, if and only if there exists 

such a weight vector w[n] (w[n]∈R
n
) and threshold θ (θ ∈ R), that all the below 

inequalities for the inner products w[n]
T
xj[n] are fulfilled:        

 (∃ w[n], θ)  (∀xj[n]∈ G
+
)    w[n]

T
xj[n]   >  θ (3) 

                                                   and   (∀xj[n]∈ G
-
)     w[n]

T
xj[n]   <  θ.            

The parameters w[n] and θ define the hyperplane H(w[n],θ) in the feature space F[n] 

(x[n]∈ F[n]):    

 H(w[n],θ) = {x[n]: w[n]
T
x[n] = θ}. (4) 

If the inequalities (3) are fulfilled, then all the elements xj[n] of the set G
+ are situated on 

the positive side of the hyperplane H(w[n],θ) (w[n]
T
xj[n] > θ)  and all the elements of the 

set G
- are situated on the negative side of this hyperplane (3). 

In practice it is not always possible to obtain the exact partition of learning sets described 

by the inequalities (3). This is not always desirable as well because of the danger of over-

fitting to the data sets (2).  

A quality of the classification rule (1) depends on the values of the parameters w[n] 

and θ. The optimal parameters w*[n] and θ* of the classification rule (1) can be 

determined through minimization of the convex and piecewise-linear (CPL) criterion 

functions defined on the learning sets G+  and G- (2). 

3 Convex and piecewise-linear (CPL) criterion functions 

Let us define the convex and piecewise-linear (CPL) penalty functions ϕj
+
(w[n], θ) and ϕj

-

(w[n], θ) in the below manner [8]:  

(∀xj[n] ∈ G
+
): 

                            θ +1 - w[n]
T 

xj[n]        if    w[n]
T 

xj[n]  < θ +1                          

 ϕj
+
(w[n],θ)  = 

                                        0                      if    w[n]
T 

xj[n]  ≥  θ +1  

(5) 

and 

(∀xj[n] ∈ G
-
) 

                           θ - 1 + w[n]
T 

xj[n]      if    w[n]
T 

xj[n]  > θ - 1                              

 ϕj
-(w[n], θ)  = 

                                       0                      if    w[n]
T 

xj[n]   ≤  θ - 1  

(6) 
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The function ϕj
+(w[n], θ) is equal to zero if the feature vector xj[n] (xj[n]∈ G

+) (2) is 

situated on the positive side of the hyperplane H(w[n],θ) (4) and is not too near to it. 

Similarly, ϕj
-(w[n], θ) is equal to zero if the vector xj[n] (xj[n] ∈ G

-
) is situated on the 

negative side of the hyperplane H(w[n], θ) and is not too near to it.   

The perceptron criterion function Φ(w[n], θ) is defined on feature vector xj[n] from 

the sets G
+
 and G

-
 (1) as the weighted sum of the penalty functions ϕj

+
(w[n], θ) (5) and ϕj

-

(w[n], θ) (6) [8]: 

Φ(w[n], θ)  = Σ,j ϕj
+
(w[n], θ)   +  Σ ,j ϕj

-
(w[n], θ), 

  j ∈J+                                         j ∈J- 

(7) 

where nonnegative parameters ,j represent prices linked to particular feature vectors 

xj[n]. The minimization of the criterion function Φ(w[n], θ) (7) allow to find the optimal 

parameters w[n]* and  θ* of the prediction rule (1):  

(∃(w[n]
*
, θ*

))  (∀(w[n], θ))  Φ(w[n], θ) ≥ Φ(w[n]
*
, θ*

) = Φ*
 ≥ 0. (8) 

It was proven that the nonnegative value Φ*
 is equal to zero (Φ*

 = 0) if and only if the sets 

G
+ 

and G
- 
(2) are linearly separable (3) [8]. 

For the purpose of the feature selection, a modified criterion function Φλ(w[n], θ), was 

introduced [8]. Φλ(w[n], θ) includes additional CPL penalty functions in the form of the 

absolute values |wi| and the costs γi (γi > 0) related to particular features xi:  

Ψλ(w[n], θ)  =  Φ(w[n], θ) +  λ Σ γi  |wi| , 
                                                                i ∈ I 

(9) 

where λ (λ ≥ 0) is the cost level, and I = {1,……,n}.    

Similarly to the function Φ(w[n], θ) (7) The criterion function Ψλ(w[n],θ) (9), similarly to 

the function Φ(w[n], θ) (8) is convex and piecewise-linear (CPL). The basis exchange 

algorithms allow to efficiently find the optimal vector of parameters (vertex) wλ[n] and the 

optimal threshold θλ constituting the minimum of the CPL function Ψλ(w[n], θ) , even in 

the case of large data sets G
+
 and G

-
 (1) [8]: 

(∃(wλ[n], θλ)) (∀w[n], θ)   Ψλ(w[n],θ) ≥ Ψλ(wλ[n], θλ) =  Ψλ
^  (10) 

The criterion function Ψλ(w[n],θ) (9) is used in the relaxed linear separability (RLS) 

method of feature selection [9]. The below feature reduction rule is used in the RLS 

method:  

(wλi =  0)  � (the feature xi is reduced), (11) 

where wλ[n] = [wλ1,...,wλn]
T  is the vector  constituting the minimum (10) of the function 

Ψλ(w[n], θ) (9). 

In accordance with the RLS method, a gradual increase of the cost level λ value in the 

criterion function Ψλ(w[n], θ) (9) allows the reduction of (11) successive features xi [9]. 

In result a reduction (11) of successive features xi, the descended sequence of feature 

subspaces Fk [nk] can be generated: 
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F[n] ⊃ F1[n1] ⊃ F2[n2] ⊃…⊃ Fk′[nk′], (12) 

where nk  >  nk+1. 

The manner of feature subspaces Fk[nk] evaluation is to define in order to determine the 

stop criterion of the feature reduction in the above sequence.  

4 Evaluation of feature subspaces Fk[nk] 

In accordance with the RLS method of feature selection, a quality of a given feature 

subspace Fk[nk] is evaluated on the basis of evaluation of the optimal linear classifiers (1) 

designed in this subspace.  

The decision rule of the optimal linear classifier LC(w
*
[nk],θ

*
) in the feature subspace 

Fk[nk] (Fk[nk] ⊂ F[n]) is defined in a similar manner to (1). The optimal parameters w
*
[nk] 

and θ* 
of the linear classifier LC(w

*
[nk],θ

*
) can be determined through the minimization 

(8) of the criterion function Φk(w[nk],θ) (7) defined on the feature vectors xj[nk] (xj[nk] ∈ 

Fk[nk]). The better optimal linear classifier LC(w*[nk],θ
*) in the feature subspace Fk[nk] 

means a higher quality of this subspace.  

The quality of the linear classifier LC(w
*
[nk],θ

*
) (1) defined by the parameters w

*
[nk] 

and θ*
  can be evaluated by using the error estimator (apparent error rate) ea(w

*
[nk],θ

*
). 

The apparent error rate is defined as the fraction of wrongly classified elements xj[nk] 

of the sets Gk

+

 and Gk
- (1) in the feature subspace Fk[nk] [10]: 

ea(w
*[nk],θ

*) = ma(w
*[nk],θ

*)  / (13) 

where m is the number of all elements xj[nk] of the sets Gk
+
 and Gk

- (1), and  ma(w
*
[nk],θ

*
) 

is the number of elements xj[nk] from these sets wrongly allocated by the rule (1). 

The parameters w
*
[nk] and θ* 

of the optimal linear classifier in the feature subspaces 

Fk[nk] were estimated from the learning sets Gk
+

 and Gk
- (2) through minimization of the 

perceptron criterion function Φk(w[nk],θ) (7) defined on elements xj[nk] of these sets. 

Because the same data xj[nk] are used for classifier designing and for classifier evaluation, 

the evaluation result (13) is too optimistic (biased) [10]. For example, if the sets Gk
+

 and 

Gk
-
 

(2) are linearly separable (3), then all the elements xj[nk] of the learning sets are 

correctly classified by the optimal classifier  LC(w
*
[nk],θ

*
) (1), and the apparent error (13) 

is equal to zero (ea(w
*[nk],θ

*) = 0). But it is typically found in practical applications that 

the error rate of the classifier LC(w*[nk],θ
*) (1) evaluated on vectors x[nk] that do not 

belong to the learning sets Gk
+

 and Gk
- (2) is higher than zero.                 

For the purpose of the classifier bias diminishing, the cross validation procedures can be 

applied [10]. The term p-fold cross validation means that data sets Gk
+

 and Gk
- (2) have 

been randomly divided into p parts Pi, where i = 1,…, p. The vectors xj[nk] contained in p 

– 1 parts Pi were used for the definition of criterion function Φk(w[nk],θ) (8) and in the 

computation of optimal parameters w
*
[nk] and θ*

. The remaining vectors xj[n] were used 

as a test set (one p-part Pi′) for the evaluation of error rate ei′(w
*[nk],θ

*) (13). This 

evaluation is repeated p times, and during each time a different p-part Pi′ is used as the test 

set. After this, the mean value ec(w
*
[nk],θ

*
) of the errors rates ei′(w

*
[nk],θ

*
) (13) on the 

elements of the test sets Pi′ is computed. The cross validation procedure allows us to use 

different vectors xj[nk] (1) for designing of the classifier (1), its evaluation, and as a result, 
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to reduce the bias of the error rate estimation (13). The error rate ec(w
*[nk],θ

*) (13) 

estimated during the cross validation procedure will be called the cross-validation error 

(CVE). A special case of the p-fold cross validation method is the leave-one out 

procedure. In the case of the leave-one out procedure, the number p of the parts Pi is equal 

to the number m of elements xj[nk] in the sets Gk
+ and Gk

- (2).    

The CVE error rate ec(w
*
[nk],θ

*
) (13) of the optimal linear classifier LC(w

*
[nk],θ

*
) (1) is 

used in the relaxed linear separability method as the criterion for evaluation of particular 

feature subspaces Fk[nk] in the sequence (12) [10]. Feature subspace Fk′[nk′] that is linked 

to the linear classifier LC(w
*
[nk′,θ

*
) (1) with the lowest CVE error rate ec(w

*
[nk′],θ

*
) (13) 

is considered as the optimal one in accordance with the RLS method of feature selection. 

5 Experiment 

In this experiment historical market data were used starting from Jan 2
nd

 2008 and ending 

October 30
th
 2010.  During that time period there were 712 working days, which give us 

exactly same number of feature vectors xj[n], one feature vector per day. Each vector 

describes the condition of the stock indexes for each day. There were 294 features used to 

describe the market environment per day. These features were derived from historical 

prices of 42 selected financial instruments. For each of the 42 instruments, the change in 

price was taken from 1,2,3,4,5,10 and 22 days back. The full list of instruments are 

presented in table 3, with short descriptions and their exchange symbols. All of these 

instruments are traded on stock exchanges in the United States, but they reflect the 

situation in different countries and different markets. All of them are ETF's (exchange-

traded funds)[9] .  

An exchange-traded fund (ETF) is an investment fund traded on stock exchanges, much 

like stocks. An ETF holds assets such as stocks, commodities, or bonds and trades at 

approximately the same price as the net asset value of its underlying assets over the 

course of the trading day. 

       www.wikipedia.org 

24 of them track the major indexes in 24 countries all over the world, 4 are for world 

regions. For example, GML is an Emerging Latin American ETF. 8 of them are for 

different currencies against the US dollar, 2 are for the commodities oil (USO) and natural 

gas (UNG), 2 are for the precious metals gold (GLD) and silver (SLV). One (DBA) is 

tracking agricultural commodity prices like corn, wheat, soy beans and sugar.  

The forecast is done for the one-day price change of a given index. Each of the feature 

vectors xj[n], is classified in class ω0 or ω1. Class ω0 was assigned if in the next day there 

was a decline in the value of the forecasted instrument, class ω1 if there was an increase. 

There were 42 assignments done for same vectors x[n], one assignment for each of the 42 

predicted instruments used in the experiment.  In the result there were 42 predictive 

models (1) built, one for each instrument. For each model the classification accuracy was 

calculated (13). 

6 Experiment results 

All 712 features vectors xj[n] were divided into 2 sets, a learning set and a test set. The 

division was done in a two ways. The first way was to use data from years 2008 and 2009 

as a learning set, and data from 2010 as the test set. The second was to divide randomly all 
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data into 3 sets, and use each set as a test set, and the other 2 as learning sets (otherwise 

known as 3 folds cross-validation). In the second case statistics were calculated as an 

average of results from the 3 runs. 

Table 1. Classification accuracy for linear classifier on all features 

1. Time split 2. Random 3 folds cross-
validation 

Training set, 
2008-2009 

Test set  
2010 

Training set 
random 

Test set 
random 

 

Apparent 
accuracy 

Accuracy Apparent accuracy Accuracy 

Average 100 51.9 100 51.9 

symbol     

DBA 100 45.5 100 50.4 

EWO 100 59.7 100 53.4 

GAF 100 48.3 100 50.6 

RSX 100 48.8 100 51.6 

EWZ 100 55.5 100 52.3 

EWW 100 47.4 100 49.1 

GML 100 52.1 100 52.9 

 
In the first case, the learning set had a size of 505 days, and test set size of 207 days.  All 

505 vectors xj[n] for every predicted symbol were linearly separated. That means that 

apparent accuracy (accuracy of classification measured on same data that the model was 

built with) is equal to 1 for all symbols. In table 1 results for a few selected symbols are 

presented, and also the minimum, average and maximum for each statistic. The models 

built with data from 2008-2009 were then used to predict price changes in 2010. The 

classification accuracy on the test set with data from 2010 in average is equal to 51.9%. 

That means that on average the model correctly predicted the direction of market moves 

only 51.9% of the time. This result is close to random or 50%. The best result was 

achieved for EWO (Austria) at 59.7%, the worst for DBA (Agriculture) at 45.5%.  

Since market data are probably time dependent, there could be an argument that the 2010 

market environment was different than in 2008 and 2009, so the classifier learnt trading 

rules that weren't appropriate for 2010. To verify this hypothesis a second test was done, 

which randomly split all data into training and test sets. 3 folds cross-validation was 

applied. The learning set had a size of 474-475 days, and the test set 237-238 days. The 

right part of table 1 shows the detailed results. Average accuracy for the test set was 

exactly the same as in the first case, 51.9%. 

7 Feature selection 

A complex model with 294 features that produces only slightly better than random 

forecasts is, in practice, not very useful. To build a better model that can discover more 

general rules in the data, we reduced the number of features. 

Features were selected using the RLS (Relax-Linear-Separability[10]) method. This 

method consists of subsequent rejections of one or more features. Following each 

rejection, the quality of classification is evaluated by leave one out cross-validation. 
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The resulting quality of classification for the instrument GAF (Emerging Middle East & 

Africa), depending on the number of features, is shown in graph 1. 

There are 2 measures. First is apparent accuracy, which is equal to 1 until reducing the 

number of features to 150, at which point we still have linear separability. For less than 

150 features apparent accuracy goes down linearly until around 15 features then it drops 

very quickly. 

The second accuracy measure is calculated using the leave-one-out (loo) method. We use 

one day as validation and the remaining days as training data to build the model. This is 

repeated so that each observation in the sample is used once as the validation data.  In this 

case data that are used to build the model are not used to calculate accuracy. The RLS 

feature selection method chooses those feature subsets that result in the highest leave-one-

out accuracy. For GAF the maximum accuracy (74.5%) was achieved with 74 features.  

This was the highest accuracy found for any instrument. Loo accuracy grows with feature 

reduction, with local accuracy maximums at 175 and 130 features and the global 

maximum at 74 features. Then accuracy goes down, more quickly for less features. 

8 Feature selection results 

Detailed results for all symbols are presented in table 2. The methodology of testing was 

the same as before. The experiment was done by dividing all data into training and test 

sets. In one case the test set was chosen as Jan-Oct 2010, in another case as a 1/3 random 

part of all data. Results are presented only for the best subset of features for each 

instrument.  

 

 

 

 

 

 
Fig. 1. Feature selection for predicting the GAF 
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Table 2. Classification accuracy for linear classifier on subset of features selected 
by RLS method 

Training set, 2008-2009 Test set  
2010 

Training set, random 3 
folds cross-validation 

Test set 
random 

 

1.size 2.app 3. loo 4. acc 1.size 2.app 3. loo 4. acc 

Average 108,74 86.0 71.1 51.8 106,58 87.0 71.5 52.7 

Symbol  

DBA 98 84.1 72.7 47.4 117,67 89.4 72.6 54.1 

EWO 120 88.5 72.4 57.8 102,67 87.1 72.5 55.9 

GAF 74 81.5 74.5 52.1 101 87.1 73.5 54.0 

RSX 60 77.6 70.4 52.6 88 85.1 72.1 55.1 

EWZ 154 90.5 69.0 52.1 111 87.1 72.0 51.5 

EWW 80 79.2 69.3 46.0 104,67 85.9 70.0 48.8 

GML 77 79.4 69.0 58.8 105,33 86.6 71.5 53.1 

 

Columns description: 

1. size – optimum number of features selected by RLS method 

2. app – apparent accuracy on training set 

3. loo – leave-one-out accuracy on training set 

4. acc – accuracy measured on test set, for model built on training set 

The optimal number of features selected by the RLS method was different for different 

symbols. The lowest number was 60 features for RSX (Russia), the highest was 154 

features for EWZ (Brazil). On average 108.74 features were selected. Classification 

results on the training set measured by leave-one-out were pretty high at 71.1%, but on the 

test set they are rather low at 51.8%. The best accuracy for 2010 test set was achieved for 

GML (Emerging Latin America) at 58.8% and worst for EWW (Mexico) at 46.0%. This 

result is similar to the previous experiment that used all features. Slightly better 

performance of 52.7% was achieved on random 3-folds cross-validation. 

9 Summary 

All results on test sets are in average similar at 51.9% for linear classification on all 

features, and 51.8% for the best subset of features in 2010. A little better results were 

observed for a subset of features on randomly split data, 52.7%, which is better by 0.9%. 

This may suggest that there is time structure in the data, meaning that rules learnt from the 

training data from 2008-2009 are not working well in 2010, or at least the first few 

months. More research needs to be done to verify this hypothesis. One approach could to 

be use training and test sets moved over time.  For example, 6 months of training data then 

1 month of test data.  

Classification accuracy does not directly translate into profits when using the model for 

investing decisions. For example if we used some model to trade over two days, where 

one day we made 2% and one day we lost lost  0.1%, accuracy would only be 50%, but 

we have had a high profit of 1.9%. To address this effect models could be built and used 

to simulate actual buy/sell transactions on the market, and portfolio histories could then be 

analyzed.  



�
�

�6
���� �*��� �	��	
0�
!���
�.�	0� "��6�05 ��-�� ��
0��	0 ��������	!	���	
0��

  371 

References 

1. Mills T.C. Time Series Techniques for Economists. Cambridge University Press, 
1990 

2. Box G. and Jenkins G., Time series analysis: Forecasting and control, San 
Francisco: Holden-Day, 1970  

3. Engle R.F., Autoregressive Conditional Heteroscedasticity with Eshtimates 
of Variance of United Kingdom Inflation, Econometrica 50:987-1008, 1982  

4. Bollerslev T., Generalized Autoregressive Conditional Heteroskedasticity,  
Journal of Econometrics, 31:307-327, 1986  

5. Haefke C., Helmenstein C., Neural Networks in the Capital Markets: 
An Application to Index Forecasting, Computational Economics, pp. 37-50, 1996  

6. Tay F.E.H., Cao L., Application of support vector machines in financial time series 
forecasting, Omega 29 (2001) 309–317 

7. Duda O. R., Hart P. E., Stork D. G.: Pattern Classification,  J. Wiley, New York, 
2001 

8. Bobrowski L.: Eksploracja danych oparta na wypukłych i odcinkowo-liniowych 
funkcjach  kryterialnych, Wydawnictwa Politechniki Białostockiej, Białystok, 2005  

9. Bobrowski L., Łukaszuk T: Feature selection based on relaxed linear separabilty, 
Biocybernetics and Biomedcal Engineering, 2009, Volume 29, Number 2,  
pp. 43-59 

10. Lachenbruch P.A., Discriminant Analysis, Hafner Press, New York, 1975 

11. Liu H., Motoda H. (Eds.) Computational Methods of Feature Selection, 
Chapmann&Hall. CRC, New York 2008  

12. Carrell L., ETFs for the Long Run: What They Are, How They Work, a and Simple 
Strategies for Successful Long-Term Investing. JW Wiley, 2008 
ISBN 978-0-470-13894-6 

Abstract 

This article describe the linear classifier based on convex and piecewise-linear function 

(CPL) and it application to market prediction. In an experiment we use CPL linear 

classifier to predict direction of one day change in stock index price. We use 

classification approach to predict only direction of change (grow or decline) of the 

index, not it quantity as in regression approach. Total number of instruments used in 

experiment including currencies is 42. Prediction of one index is based on historical 

prices of all 42 indexes. Using 7 historical values for each index it produce 294 

attributes. Such high dimensional feature space was reduced by feature selection 

method - relaxed linear separability (RLS). Details of this methodology are also 

presented. Features was selected and model was build on training data.  Test data 

(holdout data) was used for checking model accuracy. Model in average correctly 

classify (predict) 51.9% direction of daily index changes.  
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Krótkoterminowe prognozowanie indeksów 
giełdowych w oparciu o klasyfikator liniowy 

Streszczenie 

W artykule opisano klasyfikator liniowy oparty o wypukłe i odcinkowo-liniowe funkcje 

kary (CPL) i jego zastosowanie w prognozowaniu giełdy. W przeprowadzonym 

eksperymencie klasyfikator liniowy CPL został u�yty do prognozy kierunku 

jednodniowej zmiany indeksów giełdowych. W zastosowanym podej�ciu 

klasyfikacyjnym prognozowano jedynie kierunek zmian (wzrost lub spadek), a nie 

dokładn� warto�� indeksu (podej�cie regresyjne). W eksperymencie u�yto 42 

instrumentów finansowych w tym m.in. kursów walut. Jednodniowa prognoza 

wybranego instrumentu budowana jest w oparciu o warto�ci historyczne wszystkich 42 

instrumentów. U�ywaj�c 7 danych historycznych dla ka�dego instrumentu, uzyskano w 

sumie 294 atrybuty. Tak wielowymiarowa przestrze� została zredukowana metod� 

selekcji cech opart� o relaksacj� liniowej separowalno�ci. Metoda ta została opisana 

szczegółowo. Selekcja cech i budowa modelu w wybranej podprzestrzeni została 

przeprowadzona na zbiorze ucz�cym (treningowym). Natomiast ocena modelu została 

przeprowadzona na zbiorze testowym. Otrzymany wynik to �rednio 51.9% prawidłowo 

sklasyfikowanych (prognozowanych) dziennych zmian indeksów giełdowych.  

 

 

 
Praca wspierana przez projekt  S/WI/2/08 Politechniki Białostockiej. 
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Table 3: Financial instruments ETF's used in experiment 

Region 
Type 

Symbol Description  

FEU SPDR STOXX Europe 50  

GUR SPDR S&P Emerging Europe  

RSX Market Vectors Russia ETF  

EWU iShares MSCI United Kingdom Index  

EWL iShares MSCI Switzerland Index  

EWI iShares MSCI Italy Index  

EWD iShares MSCI Sweden Index  

EWG iShares MSCI Germany Index  

EWP iShares MSCI Spain Index  

EWQ iShares MSCI France Index  

EWO iShares MSCI Austria Investable Mkt Idx  

EWK iShares MSCI Belgium Investable Mkt Idx  

 
Europe 

EWN iShares MSCI Netherlands Invstbl Mkt Idx  

EWJ iShares MSCI Japan Index  

EWM iShares MSCI Malaysia Index  

EWT iShares MSCI Taiwan Index  

EWY iShares MSCI South Korea Index  

EWH iShares MSCI Hong Kong Index  

FXI iShares FTSE/Xinhua China 25 Index  

EWA iShares MSCI Australia Index  

 
Asia 

EWS iShares MSCI Singapore Index 

SPY SPDR S&P 500 USA  North 
America EWC iShares MSCI Canada Index  

GML Emerging Latin America  

EWW iShares MSCI Mexico Index Fund  
Latin  

America 
EWZ iShares MSCI Brazil Index Fund  

EZA iShares MSCI South Africa Index  
Africa 

GAF SPDR S&P Emerging Middle East & Africa  

USO United States Oil Fund  

UNG United States Natural Gas  

DBA PowerShares DB Agriculture  

GLD SPDR Gold Shares  

 
Commodities 

SLV iShares Silver Trust  

FXA CurrencyShares Australian Dollar Trust  

FXB CurrencyShares British Pound Sterling Trust  

FXC CurrencyShares Canadian Dollar Trust  

FXE CurrencyShares Euro Trust  

FXY CurrencyShares Japanese Yen Trust  

UDN PowerShares DB US Dollar Index Bearish  

UUP PowerShares DB US Dollar Index Bullish  

 
Currencies 

DBV PowerShares DB G10 Currency Harvest 

 


