PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study of mixing structure in stirred tanks equipped with multiple four-blade rushton impellers

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie struktury mieszania w zbiorniku z mieszadłem w systemie wielowirnikowym z czteropłatkowymi wirnikami Rushtona
Języki publikacji
EN
Abstrakty
EN
The effect of multiple Rushton impellers configurations on hydrodynamics and mixing performance in a stirred tank has been investigated. Three configurations defined by one, two and three Rushton impellers are compared. Results issued from our computational fluid dynamics (CFD) code are presented here concerning fields of velocity components and viscous dissipation rate. These results confirm that the multi-impellers systems are necessary to decrease the weaken zones in each stirred tanks. The experimental results developed in this work are compared with our numerical results. The good agreement validates the numerical method.
PL
W pracy badano efekt konfiguracji wielołopatkowych wirników Rushtona na hydrodynamikę i skuteczność mieszania w zbiorniku z mieszadłem. Porównano trzy konfiguracje mieszadła, zdefiniowane przez jeden, dwa lub trzy wirniki Rushtona. W artykule zaprezentowano wyniki, uzyskane przy użyciu własnego oprogramowania do obliczeń dynamiki płynów (CFD), dotyczące składników pól prędkości i szybkości dyssypacji lepkościowej. Wyniki te potwierdzają, że systemy wielowirnikowe są niezbędne dla zmniejszenia stref zubożonych w każdym zbiorniku z mieszadłem. Wyniki eksperymentalne, uzyskane w tej pracy, są porównane z wynikami obliczeń numerycznych. Dobra zgodność wyników potwierdza przydatność metody numerycznej.
Rocznik
Strony
53--72
Opis fizyczny
Bibliogr. 28 poz., fot., rys., tab.
Twórcy
autor
autor
autor
autor
  • Laboratory of Electro-Mechanic Systems (LASEM), National School of Engineers of Sfax (ENIS), University of Sfax (US), B.P. 1173, Road Soukra. km 3.5. 3038 Sfax, Tunisia, Zied.Driss@enis.rnu.tn
Bibliografia
  • [1] Guillard F., Tragardh С., Fuches L.: A study on the instability of coherent mixing structures in a continuously stirred tank, Chemical Engineering Science, 2000, 55, 5657-5670.
  • [2] Driss Z., Bouzgarrou G., Chtourou W., Kchaou H., Abid M.S.: Computational studies of the pitched blade turbines design effect on the stirred tank flow characteristics, European Journal of Mechanics B/Fluids, 2010, 29, 236-245.
  • [3] Kchaou H., Driss Z., Bouzgarrou G., Chtourou W., Abid M.S.: Numerical investigation of internal turbulent flow generated by a flat-blade turbine and a pitched-blade turbine in a vessel tank, International Review of Mechanical Engineering, 2008, 2, 427-434.
  • [4] Stitt E.H.: Alternative multiphase reactors for fine chemicals A world beyond stirred tanks, Chemical Engineering Journal, 2002, 90, 47-60.
  • [5] Murthy N.B., Joshi J.B.: Assessment of standard k-ε RSM and LES turbulent models in a baffled stirred agitated by various impeller designs, Chemical Engineering Science, 2008, 63, 5468-5495.
  • [6] Karcz J., Major M.: An Effect of a baffle Length on the power consumption in an agitated vessel, Chemical Engineering Science, 1998, 37, 249-256.
  • [7] Placek J., Tavlarides L.L.: Turbulent flow in stirred tanks, I: Turbulent flow in the turbine impeller region, AIChE Journal, 1985, 31, 1113-1120.
  • [8] Montante G., Lee K.C., Brucato Α., Yianneskis M.: Experiments and predictions of the transition of the flow pattern with impeller clearance in stirred tanks, Computers and Chemical Engineering, 2001, 25, 729-735.
  • [9] Deglon D.A., Meyer C.J.: CFD modeling of stirred tanks: Numerical considerations, Minerals Engineering, 2006, 19, 1059-1068.
  • [10] Pericleous K.A., Patel M.K.: The modelling of tangential and axial agitators in chemical reactors, Physico. Chem. Hydrodyn., 1987, 8, 105-123.
  • [11] Costes J., Couderc J.P.: Study by laser Doppler anemometry of the turbulent flow induced by a Rushton turbine in stirred tank: influence of the size of the units, Chemical Engineering Science, 43, 1988, 2754-2772.
  • [12] Alcamo R., Micale G., Grisafi F., Brucato Α., Ciofalo M.: Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine, Chemical Engineering Science, 2005, 60, 2303-2316.
  • [13] Zalc J.M., Szalai E.S., Alvarez M.M., Muzzio F.J.: Using CFD to understand chaotic mixing in laminar stirred tanks, AIChE Journal, 2002, 48, 2124-2134.
  • [14] Brucato Α., Ciofalo M., Grisafi F., Micale G.: Numerical prediction of flow fields in baffled stirred vessels: A comparison of alternative modelling approaches, Chemical Engineering Science, 1998, 53, 3653-3684.
  • [15] Alvarez M.M., Zalc J.M., Shinbrot Т., Arratia P.E., Muzzio F.J.: Mechanisms of mixing and creation of structure in laminar stirred tanks, AIChE Journal, 2002, 48, 2135-2148.
  • [16] Guillard F., Trägardh С.: Mixing in industrial Rushton turbine agitated reactors under aerated conditions, Chemical Engineering and Processing, 2003, 42, 373-386.
  • [17] Chtourou W., Ammar M., Driss Z., Abid M.S.: Effect of the turbulent models on the flow generated with Rushton turbine in stirred tank, Central European Journal of Engineering, 2011, 1(4), 380-389.
  • [18] Ammar M., Driss Z., Chtourou W., Abid M.S.: Study of the baffles length effect on turbulent flow generated in stirred vessels equipped by a Rushton turbine, Central European Journal of Engineering, 2011, 1(4), 401-412.
  • [19] Driss Z., Karray S., Kchaou H., Abid M.S.: CFD simulation of the laminar flow in stirred tanks generated by double helical ribbons, Central European Journal of Engineering, 2011, 1(4), 413-422.
  • [20] Driss Z., Bouzgarrou G., Kchaou H., Abid M.S.: Computer simulation of the laminar flow in stirred tanks generated by the proximity impellers of a mono and double screws type with simple and modified profiles, Mechanics & Industries, 2011, 12, 109-121.
  • [21] Driss Z., Kchaou H., Baccar M., Abid M.S.: Numerical investigation of internal laminar flow generated by a retreated-blade paddle and a flat-blade paddle in a vessel tank, International Journal of Engineering Simulation, 2005, 6, 10-16.
  • [22] Driss Z., Karray S., Kchaou H., Abid M.S.: Computer Simulations of Fluid-Structure Interaction Generated by a Flat-Blade Paddle in a Vessel Tank, International Review of Mechanical Engineering, 2007, 1, 608-617.
  • [23] Bouzgarrou G., Driss Z., Abid M.S., CFD simulation of mechanically agitated vessel generated by modified pitched blade turbines, International Journal of Engineering Simulation, 2009, 10, 11-18.
  • [24] Driss Z., Karray S., Kchaou H., Abid M.S.: Computer simulations of laminar flow generated by an anchor blade and a Maxblend impellers, Science Academy Transactions on Renewable Energy Systems Engineering and Technology, 2011, Vol. 1, N. 3, 68-76.
  • [25] Driss Z.: Contribution in studies of the turbines in an agitated vessel, PhD thesis, National School of Engineers of Sfax, University of Sfax, Tunisia, 2008.
  • [26] Patankar S.V.: Numerical heat transfer and fluid flow, Series in Computational Methods in Mechanics and Thermal Sciences, Mc Graw Hill, New York, 1980.
  • [27] Douglas J., Gunn J.E.: A general formulation of alternating direction implicit methods, Num. Math., 1964, 6, 428-453.
  • [28] Rushton J.H., Costich E.W., Everett H.J.: Power characteristics of mixing impellers, Chemical Engineering Progress, 1950, 46, 467-476.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0028-0049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.