PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simultaneous abrasion and edge fracture resistance estimation of hard materials by the tribotesting method

Autorzy
Identyfikatory
Warianty tytułu
PL
Tribologiczna metoda łącznego wyznaczania odporności na zużycie ścierne i pękanie krawędziowe dla materiałów ceramicznych i węglików spiekanych
Języki publikacji
EN
Abstrakty
EN
Fracture toughness and wear resistance are two of the major material characteristics to take into consideration when designing tools, particularly inserts for rotary and percussion rotary drilling, inserts for mining shearer picks and rotary picks made of hardmetals (WC-Co cemented carbides). This is mainly due to the high risk of brittle fracture in tools made of these materials and due to the importance of resistance to abrasion where the contact pressure between the component and abrasive is high as in mining and rock drilling. WC-Co hardmetals are materials that combine high abrasion resistance and hardness with rather low levels of toughness as a consequence of their microstructure. Nevertheless, the main problem facing designers remains the fact that the tungsten carbide and other cermetal tools may exhibit sudden brittle fracture. Since fracture toughness is often the major limiting parameter governing the use of WC-Co drilling and cutting tools, there is a need for research aimed at increasing toughness without sacrificing wear resistance. To aid in this objective, a simple and reliable integrated testing method, such as that presented in this paper, is needed for quick assessment of progress in such research. There are several methods for the measurement of fracture toughness, although there is no standard method for hardmetals. The single edge pre-cracked beam method and the chevron notch method (both proposed by the ASTM) are most commonly used despite the fact that they are rather expensive and laborious. Problems connected with the effective and reliable use of these experimental methods has stimulated efforts towards the following: firstly, the development of empirical and semi-empirical formulae describing the relationship between the critical stress intensity factor (KIC) and other mechanical and physical properties that are much easier to evaluate; and, secondly, the development of new toughness evaluation methods based on edge damage pattern. One such method currently evolved by the Tribotechnology Division at Silesian University of Technology is the subject of further, more advanced study together with the Institute for Sustainable Technologies, Radom. The method is based on the concept of edge chipping in the initial transition stage of abrasion wear, which is controlled by the brittle fracture process. The method of testing is seen as a promising and pragmatic way of ranking hard materials for fracture toughness and wear resistance. The limitations of the method for tougher materials such as novel hardmetals and ceramics are investigated in this paper.
PL
Odporność na pękanie i odporność na zużycie ścierne są dwoma głównymi parametrami charakteryzującymi materiały stosowane na narzędzia, takie jak np. wiertła, noże kombajnów ścianowych i chodnikowych. Ostrza tych narzędzi wykonuje się obecnie głównie z węglików spiekanych (WC-Co). Znaczenie ww. parametrów jest konsekwencją udziału dwóch głównych mechanizmów uszkodzeń prowadzących do utraty zdatności eksploatacyjnej tych narzędzi, czyli pękania ostrzy oraz ich zużycia ściernego w kontakcie ze skałą w trakcie wiercenia lub urabiania przez skrawanie. Ponieważ odporność na pękanie i zużycie ścierne decydują o właściwym doborze materiałów na ostrza narzędzi, potrzebna jest do oceny tych materiałów metoda badawcza integrująca oba główne mechanizmy uszkodzeń. Metodę taką oraz jej praktyczne zastosowanie przedstawiono w tym artykule. Znanych jest kilka metod pomiaru odporności na kruche pękanie, chociaż żadna z nich nie została uznana za standardową dla węglików spiekanych. Stosowana jest np. metoda SEPB (Single Edge Pre-cracked Beam) oraz metoda CNB (Chevron Notched Beam), chociaż obie te metody są raczej pracochłonne dla materiałów kruchych. Trudności związane z efektywnym i niezawodnym zastosowaniem dla twardych i kruchych materiałów eksperymentalnego wyznaczania odporności na pękanie (KIC) w warunkach płaskiego stanu odkształcenia spowodowały poszukiwanie metod alternatywnych. Jedna z takich metod, obecnie opracowywana w Politechnice Śląskiej, jest przedmiotem dalszych badań rozwojowych razem z Instytutem Technologii Eksploatacji w Radomiu. W tym artykule są przedstawione wstępne wyniki tej pracy oraz wcześniejsze badania własne autora.
Twórcy
  • Silesian University of Technology, Faculty of Mining and Geology, Institute of Mining Mechanisation, Akademicka 2 Street, 44-100 Gliwice, Poland, stanislaw.sciezka@polsl.pl
Bibliografia
  • [1] Roebuck В., Gee Μ., Bennett E.G., Morrell R., Mechanical Tests for Hardmetal, NPL Good Practice Guide No 20, Teddington, 2000.
  • [2] Morrell R., Flexural Strength Testing of Ceramics and Hardmetals, NPL Good Practice Guide No 7, Teddington, 1997.
  • [3] Ogilvy M., Perrott C.M., Suiter J., On the Indentation Fracture of Cemented Carbide - Survey of Operative Fracture Modes, Wear, 43, 239-252, 1977.
  • [4] Bennett E., Lay L., Morrell R., Roebuck В., Microstructural Measurements on Ceramics and Hardmetals, NPL Good Practice Guide No 21, Teddington, 1999.
  • [5] Laugier M.T., Palmqvist indentation toughness in WC-Co composites, J. Mater. Sci. Lett. 1987, 6, 897-900.
  • [6] Jamison W.E., in Wear Control Handbook, eds. Peterson Μ В and Winer W, ASME, New York, 1980, 859-887.
  • [7] Larsen-Basse J., Wear of hardmetals in rock drilling, Powder Metallurgy, Vol 16, 1, 1973.
  • [8] Clark G.G., Principles of rock drilling and bit wear, Colorado SOM Quarterly, Vol 77, 2, 1982.
  • [9] Guo H., Aziz N., Schmidt L.C., Rock cutting study using linear elastic fracture mechanics, Engineering Fracture Mechanics, 5, 1992, 771-780.
  • [10] Scieszka S.F., Filipowicz K., An integrated testing method for cermet abrasion resistance and fracture toughness evaluation, Wear, 216, 1998, 202-210.
  • [11] Scieszka S.F., Wear transition as a means of fracture toughness evaluation of hardmetals, Tribology Letters, 11, 3-4, 2001, 185-194.
  • [12] Fang Z., Griffo Α., Lockwood G., Bitler J., Properties of a high toughness cemented tungsten carbide composite, Advances in Powder Metallurgy and Particulate Materials, MPIF, New Jersey, 1999, 10-123-131.
  • [13] Roebuck В., Bennett E., Lay L., Morrell R., Palmqvist toughness for hard and brittle materials, NPL Good Practice Guide No 9, Teddington, 1998.
  • [14] Yanaba Y., Hayashi K., Relation between fracture surface area of a flexural strength specimen and fracture toughness for WC-10 mass%Co Cemented carbide and Si3N4 ceramics, Materials Science and Engineering, A209, 1996, 167-174.
  • [15] Lawn В., Fracture of brittle solids, Cambridge University Press, 1995.
  • [16] Zeng K., Breder K., Rowcliffe D.J., The Hertzian stress field and formation of cone cracks, Acta Meetall. Mater. 40, 10, 1992, 2505-2605.
  • [17] Roberts S.G., Hertzian Testing of ceramics, British Ceramic Transactions, 99, 1, 2000, 31-38.
  • [18] Li Y., Hills D.A., The Hertzian cone crack, Transactions of the ASME, 58, 1991, 120-127.
  • [19] Thouless M.D., Evans A.G., Ashby M.F., Hutchinson J.W., The edge cracking and spalling of brittle plates, Acta Metall. 35, 6, 1987, 1333-1341.
  • [20] Inoue Т., Kuniki Т., Shibata J., A study on the edge-break in machining of brittle materials, Bull. Japan Soc of Ρrec. Engg. 23, 1, 1989, 10-16.
  • [21] McCormick N.J., Edge Flaking of brittle materials, PhD Thesis, NPL Teddington, 1993.
  • [22] Morrell R., Gant A.J., Edge chipping of hard materials, J. J. of Refractory Metals and Hard Materials, 19, 2001, 293-301.
  • [23] Shepherd WM., Stress systems in an infinite sector, Proc. Roy. Soc. A. 129, 1935, 284-303.
  • [24] Oda Μ., Iwashita K., Mechanics of Granular Materials, Balkema, Rotterdam, 1999.
  • [25] Hornbogen Ε., The role of fracture toughness in the wear of materials, Wear, 33, 1975, 251-259.
  • [26] Hutchings I.M., Tribology, Friction and Wear of Engineering Materials, Arnold, London, 1992, ρ 153.
  • [27] Neale M.J., Gee M., Guide to Wear Problems and Testing for Industry, Professional Eng. Publ. London, 2000.
  • [28] Stachowiak G.W., Batchelor A.W., Engineering Tribology, Butterworth-Heinemann, Woburn, 2001.
  • [29] Tylczak H., Abrasive Wear, in ASM Handbook, Vol 18, ASM International, 1992.
  • [30] Almond E., Lay L., Gee M., Comparison of sliding and abrasive wear mechanisms in ceramics and cemented carbides, ed. Almond E, Brookes C, and Warren R, Science of Hard Materials, A Hilger Ltd, Bristol, 1986.
  • [31] Yancey H., Geer M., Price J., Transactions AIME Mining Eng, March 1951.
  • [32] Spero C., Review of test methods for abrasive wear in ore grinding, Wear, 146, 1991.
  • [33] Slasar M., Dusza J., Parilak L., Micromechanics of fracture WC-Co hardmetals, ed. Almond E., Brookes C., Warren R., in Science of Hard Materials, A Hilger Ltd, Bristol, 1986.
  • [34] Larsen-Basse J., Binder extrusion in sliding wear of WC-Co alloys, Wear, 105, 1985, 247-256.
  • [35] Rowcliffe D., Jayaram V., Hibbs M., Sinclair R., Compression deformation and fracture in WC materials, Materials Science and Engineering, A105/106, 1988, 299-303.
  • [36] Osburn H., Wear of rock-cutting tools, Powder Metallurgy, 12, 1969, 24, 471-502.
  • [37] Blomberg R., Perrott С., Robinson P., Similarities in the mechanisms of wear of tungsten carbide-cobalt tools in rock and metal cutting, Wear, 27, 1974, 383-390.
  • [38] Blomberg R., Perrott С., Robinson P., Abrasive wear of tungsten carbide-cobalt composites, Wear mechanisms, Materials Science and Engineering, 13, 1974, 93-100.
  • [39] Larsen-Basse J., Koyanagi E., Abrasion of WC-Co alloys by quartz, J. of Lubrication Technology, 101, 1979, 208-211.
  • [40] Cuddon Α., Allen C., The wear of tungsten carbide-cobalt cemented carbides in a coal ash conditioner, Wear, 153, 1992, 375-385.
  • [41] Anand K., Conrad H., Microstructure and scaling effects in the damage of WC-Co alloys by single impacts of hard particles, J. Materials Science, 23, 1988, 2931-2942.
  • [42] Sigl L., Exner H., Experimental study of the mechanics of fracture in WC-Co alloys. Metallurgical Transactions, 18, 1987, 1299-1308.
  • [43] Dusza J., Fractographic failure analysis of brittle materials, Int. J. of Materials and Product Technology, 15, 2000, 292-355.
  • [44] Wayne S., Baldoni J., Buljan S., Abrasion and erosion of WC-Co with controlled microstructures, Tribology Transactions, 33, 1990, 611-617.
  • [45] Laugier Μ., A microstructural model relating fracture toughness and hardness in WC composites, Powder Metallurgy International, 18, 1986, 330-332.
  • [46] Luyckx S., Richter V., Quigley D., Makhere L., On the relationship between fracture toughness, hardness and grain size in WC-Co alloys, Proc. of the Int. Conf. on PM Materials, Kosice, 1996, 109-116.
  • [47] Stevens R., Zirconia and Zirconia ceramics, Magnesium Electron Publication, No. 113, 1980, 1-33.
  • [48] Waterman N., Ashby M., Elsevier Materials Selection, Elsevier, London, 1991, pp. 1402-34.
  • [49] Brookes K., Novel approaches lead to better wear resistance in hard materials, Metal Powder Report, October 2003, 34-39.
  • [50] Brookes K., Functional design puts the bite into hard and refractory metals, Metal Powder Report, November 2003, 20-25.
  • [51] Deng X., Patterson В., Chawla K., Koopman M., Fang Z., Lockwood G., Griffo Α., Mechanical properties of a hybrid cemented carbide composite, I. J. of Refractory Metals & Hard Materials 19, 2001, 547-552.
  • [52] Fang Z., Griffo Α., Lockwood G., Bitler J., Properties of a high toughness cemented tungsten carbide composite, Conference Proceedings Advances in Powder Metallurgy and Particulate Materials, MpiE, New Jersey, 1999, 10, 123-131.
  • [53] Fang Z., Griffo Α., White В., Lockwood G., Belnap D., Hilmas G., Bitler J., Fracture resistant super hard materials and hardmetals composite with functionally designed microstructure, I. J. of Refractory Metals & Hard Materials, 19, 2001, 453-459.
  • [54] Toth R., Keanne J., Tough coats on hard powders - a revolution in the making? Metal Powder Report, September 2003, 14-20.
  • [55] Gille G., Szesny В., Dreyer K., van den Berg H., Schmidt J., Gestrich Т., Leitner G., Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts, I. J. of Refractory Metals & Hard Materials, 20, 2002, 3-22.
  • [56] Prakash L., Application of fine grained tungsten carbide based cemented carbides, I. J. of Refractory Metals & Hard Materials, 13, 1995, 257-264.
  • [57] Schubert W., Bock Α., Lux В., General aspects and limitations of conventional utlrafine WC powder manufacture and hard metal production, I. J. of Refractory Metals & Hard Materials, 13, 1995, 281-296.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0028-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.