PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kompozyty z regularnym azotkiem boru i ich zastosowanie w obróbce skrawaniem

Autorzy
Identyfikatory
Warianty tytułu
EN
Cubic boron nitride based composites and their application in machining
Języki publikacji
PL
Abstrakty
PL
W ramach pracy przeprowadzono badania nad oddziaływaniem azotku boru z wybranymi związkami tytanu (TiN, TiC, TiB2, Ti3SiC2) w kompozytach spiekanych techniką wysokociśnieniową (HPHT), a także ustalono zależności pomiędzy ich składem fazowym, parametrami otrzymywania oraz właściwościami mechanicznymi i technologicznymi. Wstępny skład fazowy kompozytów ustalono w wyniku obliczeń równowag chemicznych w układach BN-wybrane związki tytanu. Otrzymane kompozyty poddano badaniom strukturalnym i fazowym z wykorzystaniem metod dyfrakcji rentgenowskiej (XRD), spektroskopii rentgenowskiej (XANES), spektroskopii fotoelektronów (XPS), mikroskopii elektronowej skaningowej (SEM) i transmisyjnej (TEM), jak również systematycznym badaniom właściwości fizycznych i mechanicznych, w tym z zastosowaniem metod nieniszczących. Wybrane kompozyty poddano testom skrawania. Kompozyty charakteryzują się bezporowatą strukturą z równomiernie rozprowadzonymi składnikami w całej ich objętości. W procesie spiekania tworzą się nowe fazy, których liczba i rodzaj są ściśle uzależnione od parametrów ciśnieniowo-temperaturowych oraz od udziału ilościowego dodatków modyfikujących. Wykrywalność tych faz jest różna w zależności od charakterystyki danej metody. Zastosowanie wielu, wzajemnie uzupełniających się metod analizy fazowej pozwoliło na właściwą interpretację wyników. Badania właściwości fizycznych i mechanicznych kompozytów, ze względu na niewielki rozmiar próbek, polegały na pomiarach gęstości metodą hydrostatyczną, modułu Young 'a i liczby Poisson 'a metodą ultradźwiękową oraz twardości metodą Vickers'a. Dla zanalizowania zależności między strukturą kompozytów a ich stałymi sprężystości przeprowadzono zarówno badania porównawcze, jak też modelowe. Wartości modułów sprężystości wzdłużnej kompozytów są ściśle powiązane z ilością i rodzajem dodatku modyfikującego, a także z parametrami ich spiekania: temperaturą i czasem. Ze wzrostem udziału objętościowego cBN w badanych kompozytach ich moduły Young'a wzrastają. Dla każdej grupy kompozytów określono charakterystyczny zakres temperatur i czasów spiekania, zapewniających ich dobre właściwości fizyczne i mechaniczne. Najwyższą trwałością charakteryzują się ostrza skrawające wykonane z kompozytów modyfikowanych azotkiem tytanu. Ostrza te swoją skrawnością dorównują produktom światowych liderów w dziedzinie narzędzi skrawających.
EN
In the research the interactions between cubic boron nitride and selected titanium compounds (TiN, TiC, TiB2, Ti3SiC2) in composites obtained by HPHT (High Pressure — High Temperature) method as well as a dependence between their phase composition, sintering parameters, mechanical and technological properties, were studied. The preliminary estimation of a phase composition of the composites was carried out by calculations of chemical equillibria in BN-selected titanium compounds systems. The sintered composites were subjected to phase and structure analysis using the following methods: X-ray diffraction (XRD), X-ray absorption near edge spectroscopy (XANES), X-ray photoelectron spectroscopy (XPS), electron microscopy (SEM and TEM). Mechanical and technological properties of the composites were also investigated. The composites showed a compact structure without pores with components uniformly distributed within their volume. New phases were formed during synthesis process. Their number and type strongly depended on the parameters of synthesis (pressure, temperature) and on the type and quantity of modifying agents. Detectability of these phases varies depending on the characteristics of the method used for analysis. Application of many different, complementary phase analysis methods allows to interpret the results properly. Due to the small size of samples testing of the mechanical properties of composites consisted of measuring the hardness by the Vickers method and elasticity constants by the ultrasonic method. To analyze the relationship between the structure of composites and their moduli of elasticity both, comparative studies as well as a model studies, were carried out. The values of elastic constants of composites are closely related to the quantity and the type of modifying additives and to the parameters of sintering (T, t). Generally, with increasing volume ratio of cBN grains in the tested composites their Young's modulus also increases. Characteristic, optimal conditions which gave good mechanical properties for each group of composites were determined. The best cutting ability showed cutting edges made of composites with TiN compound as binding phase. It is comparable with that of tools produced by the world leaders.
Rocznik
Tom
Strony
114--114
Opis fizyczny
s., Bibliogr. 159 poz., fot., rys., tab.
Twórcy
autor
Bibliografia
  • [1] M. Wysiecki, Nowoczesne materiały narzędziowe, WNT, Warszawa 1997.
  • [2] K. Jemielniak, Obróbka Skrawaniem, OWPW, Warszawa 1998.
  • [3] A. Kwatera, A. Sawka, Narzędzia skrawające o podwyższonej żywotności z ceramicznymi warstwami ochronnymi, III Ogólnopolska Konferencja Naukowa Obróbka Powierzchniowa, Częstochowa - Kule 1996.
  • [4] A. Ciaś, J. Konstanty, T. Pieczonka i in., Wpływ obróbki cieplnej na własności stali szybkotnącej Fe-2,3 C-6,8 Mo-6,9 W-4,0 V-10,8 Co wytwarzanej metodą spiekania supersolidus, Hutnik - Wiadomości Hutnicze 5 (1999).
  • [5] M. Jilek, T. Cselle, P. Holubar, M. Morstein, M. G. J. Veprek-Heijman, S. Veprek, Development of Superhard Nanocomposite Coatings for Dry, Hard Machining and of the Coating Technology for Industrial Production, Proc. 16th Int. Symp. on Plasma Chemistry, Taormina (Italy), June 22-27, Eds. R. d'Agostino, Dept. of Chemistry, University of Bari.
  • [6] S. Veprek, A.S. Argon, Towards the understanding of mechanical properties of super- and ultrahard nanocomposites, Journal of Vacuum Science and Technology B 20/2 (2002).
  • [7] S. Veprek, The search for novel, superhard materials, Journal of Vacuum Science and Technology A 17/5 (1999).
  • [8] J. Felba, K.P. Friedel, P. Krull, I. L. Pobol, H. Wohlfahrt, Electron beam activated brazing of cubic boron nitride to tungsten carbide cutting tools, Vacuum 62 (2001) 171-180.
  • [9] T.J. Broskea, PCBN Tool Failure Mechanism Analysis, Industrial Diamond Association, Intertech 2000, Vancouver, British Columbia, Canada, July 17-21, 2000.
  • [10] K. Liu, X.P. Li, M. Rahmana, X.D. Liu, CBN tool wear in ductile cutting of tungsten carbide, Wear 255 (2003) 1344-1351.
  • [11] T.K. Harris, E.J. Brookes, C.J. Taylor, The flow stress of PcBN cutting tool materials at high temperatures, International Journal of Refractory Metals and Hard Materials, 19 (2001) 267 - 273.
  • [12] Y.K. Chou, C.J. Evans, M.M. Barash, Experimental investigation on cubic boron nitride turning of hardened ANSI 52100 steel, Journal of Materials Processing Technology 134 (2003) 1-9.
  • [13] Y. K. Chou, CJ. Evans, Cubic boron nitride tool wear in interrupted hard cutting, Wear 225-229 (1999) 234-245.
  • [14] Hideharu Katoa, Kazuhiro Shintania, Hitoshi Sumiyab, Cutting performance of a binder-less sintered cubic boron nitride tool in the high-speed milling of gray cast iron, Journal of Materials Processing Technology 127 (2002) 217-221.
  • [15] P. Fallbohmer, C.A. Rodriguez, T. Ozel, T. Altan, High-speed machining of cast iron and alloy steels for die and mold manufacturing, Journal of Materials Processing Technology 98 (2000) 104-115.
  • [16] M. Zimmermann, M. Lahres, D.V. Viens, B.L. Laube, Investigations of wear of cubic boron nitride tools using Auger electron spectroscopy and X-ray analysis by EPMA, Wear 209 (1997) 241-246.
  • [17] M. Gastel, C. Konetschny, U. Reuter, C. Fasel, H. Schulz, R. Riedel, H.M. Ortner, Investigation of the wear mechanism of cubic boron nitride tools used for machining of compacted graphite iron and grey cast iron, International Journal of Refractory Metals and Hard Materials 18 (2000) 287-296.
  • [18] S.K. Bhamik, C. Divakar, A.K. Singh, Machining Ti-Al-4V alloy with a wBN-cBN composite tool, Materials and Design 16 (4) 1995.
  • [19] J. Barry, G. Byrne, Cutting tool wear in the machining of hardened steels Part II: cubic boron nitride cutting tool wear, Wear 247 (2001) 152-160.
  • [20] G. Poulachon, A. Moisan, I.S. Jawahir, Tool-wear mechanisms in hard turning with polycrystalline cubic boron nitride tools, Wear 250 (2001) 576-586.
  • [21] W.Y.H. Liew, B.K.A. Ngoi, Y.G. Lu, Wear characteristics of PCBN tools in the ultra-precision machining of stainless steel at low speeds, Wear 254 (2003) 265-277.
  • [22] F. Nabhani, Wear mechanisms of ultra hard cutting tools materials, Journal of Materials Processing Technology 115 (2001) 402 - 412.
  • [23] Tadakazu Ohashi, Hidetoshi Nakajima, Yoichi Hamada, Katsuyoshi Omino, Kazuo Yamamoto, Some properties and cutting performance of polycrystalline cubic boron nitride without additives, ADC/FCT Joint Conference, Auburn, Alabama USA 2001.
  • [24] J. Daumen, Mikrogeometrie - Potenzial beim Hartdrehen, WB 5 (2001) 25.
  • [25] L.A. Dobrzański, Podstawy nauki o materiałach i metaloznawstwo, WNT, Warszawa 2002.
  • [26] L. Vel, G. Demazeau, J. Etourneau, Cubic boron nitride: synthesis, physicochemical properties and applications, Materials Science and Engineering B10 (1991) 149-164.
  • [27] G. Demazeau, High pressure diamond and cubic boron nitride synthesis, Diamond and Related Materials 4 (1995) 284-287.
  • [28] M. Wakatsuki, K. Ichinose, T. Aoki, Synthesis of Polycrystalline Cubic BN, Materials Research Bulletin 7 (1972) 999-1004.
  • [29] E. Benko, Reakcje regularnego azotku boru z wybranymi metalami, Zeszyty Naukowe IOS Kraków 79 (1998).
  • [30] S. Alkoy, C. Toy, T. Gonul, A. Tekin, Crystallization behavior and characterization of turbostratic boron nitride, Journal of European Ceramic Society 17 (1997) 1415-1422.
  • [31] J. Huang, Y.T. Zhu, Advances in the Synthesis and Characterization of Boron Nitride, Defect and Diffusion Forum 186-187 (2000) 1-32.
  • [32] P.B. Mirkarimi, F.K. McCarty, D.L. Medlin, Review of advances in cubic boron nitride film synthesis, Material Science and Engineering R21 (1997) 40-100.
  • [33] J. Y. Huang, Y.T. Zhu, Atomic-Scale Structural Investigations on the Nucleation of Cubic Boron Nitride from Amorphous Boron Nitride under High Pressures and Temperatures, Chemistry of Materials 14 (2002) 1873-1878.
  • [34] J.Y. Huang, H. Yasuda, H. Mori, HRTEM and EELS Studies on the Amorphization of Hexagonal Boron Nitride Induced by Ball Milling, Journal of American Ceramic Society 83/2 (2000) 403-09.
  • [35] T. Hirano, T. Oku, K. Suganuma. Atomic structure and electronic state of boron nitride fullerenes and nanotubes, Diamond and Related Materials 9 (2000) 625-628.
  • [36] Jin-Hyo Boo, Soon-Bo Lee, MOCVD of Hexagonal Boron Nitride Thin Films on Si(100) Using New Single Source Precursors, Journal of the Korean Physical Society 34 (1999) 532-537.
  • [37] J.M. Carrapichano, J.R. Gomesb, R.F. Silva, Tribological behaviour of Si3N4-BN ceramic materials for dry sliding applications, Wear 253 (2002) 1070-1076.
  • [38] V. Turkievich, T. Taniguchi, A. Andreev, P. Itsenko, Kinetics and mechanism of cubic boron nitride formation in the AlN-BN system at 6 GPa, Diamond and Related Materials 13 (2004) 64-68.
  • [39] D.W. He, M. Akaishi, T. Tanaka, High pressure synthesis of cubic boron nitride from Si-hBN system, Diamond and Related Materials 10 (2001) 1465-1469.
  • [40] O. Fukunaga, Science and technology in the recent development of boron nitride materials, Journal of Physics: Condensed Matter, 14/44 (2002) 10979-10982.
  • [41] C.A.M. Casanova, N.M. Balzaretti, G. Voronin, J.A.H da Jornada, Experimental study of plastic deformation during sintering of cubic boron nitride compacts, Diamond and Related Materials 8 (1999) 1451-1454.
  • [42] V.L. Solozhenko, New concept of BN phase diagram: an applied aspect, Diamond and Related Materials 4 (1994) 1-4.
  • [43] V.L. Solozhenko, V.Z. Turkevich, G. Will, Thermodynamic analysis of the BN - NH3 system at high pressures, High Pressure Research 15 (1996) 135-141.
  • [44] G. Will, G. Nover, J. Gonna, New experimental results on the phase diagram of boron nitride, Journal of Solid State Chemistry 154 (2000) 280-285.
  • [45] V.Z. Turkievich, Phase diagrams and synthesis of cubic boron nitride, Journal of Physics: Condensed Matter 14 (2002) 10963-10968.
  • [46] Osamu Fukunaga, The equilibrium phase boundary between hexagonal and cubic boron nitride, Diamond and Related Materials 9 (2000) 7-12.
  • [47] V.L. Solozhenko, The thermodynamic aspect of boron nitride polymorphism and the BN phase diagram, High Pressure Research 7 (1991) 201.
  • [48] F.R. Corrigan, F.P. Bundy, Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures, Journal of Chemical Physics, 63 (1997) 3812.
  • [49] S.Horiuchi, J.Y. Huang, L.L. He, J. F. Mao, T. Taniguchi, Facilitated synthesis of cubic boron nitride by a mechanochemical effect, Philosophical Magazine A 78/5 (1998) 1065-1072.
  • [50] T.E. Mosuang, J.E. Lowther, Relative stability of cubic and different hexagonal forms of boron nitride, Journal of Physics and Chemistry of Solids 63 (2002) 363-368.
  • [51] J. Gonna, G. Nover, H.J. Meurer, P. Zinn, In situ observation of cBN deposition on CVD diamond films and diamond single crystals, DESY Germany, Annual Reports 1998.
  • [52] M.P. D'Evelyn, Industrial Diamond, GE Report, 2001CRD026, March 2001.
  • [53] G.A. Slack, S.F. Bartram, Thermal Expansion of Some Diamondlike Crystals, Journal of Applied Physics 46/1 (1975) 89-98.
  • [54] G.A. Slack, Nonmetallic Crystals with High Thermal Conductivity, Journal of Physics and Chemistry of Solids 34 (1973) 321-335.
  • [55] R.H. Wentorf, Journal of Chemical Physics 26 (1957) 956.
  • [56] T. Gibas, L. Jaworska, Shock-treated Boron Nitride as a Sintering Aid for c-BN Compacting Under High Pressure, International Journal of Refractory Materials and Hard Materials, 15 (1997) 57-60.
  • [57] A.C. Carius, The Grindability of Powder Metal Materials Using CBN Abrasives, INTERTECH 2000, July 18,2000.
  • [58] BZN* 7000S - Solid PCBN Semi-Finished Inserts, Materiały firmy GE Superabrasives.
  • [59] M.W. Cook, P.K. Bossom, Trends and recent developments in the material manufacture and cutting tool application of polycrystalline diamond and polycrystalline cubic boron nitride, International Journal of Refractory Metals & Hard Materials 18 (2000) 147-152.
  • [60] A. Bochko, G. Bobrovnitchii, Superhard composites based on cubic boron nitride, Proceedings of the Sixth Applied Diamond Conference /Second Frontier Carbon Technology Joint Conference (ADC/FCT 2001).
  • [61] H. Yoshida, S. Kume, Very high pressure sintering of cBN fine particles coated with TiN-TiB2 layer formed by disproportionation reaction in molten salts, Journal of Materials Research 12/3 (1997) 585.
  • [62] I. Gotman, N.A. Travitzky, E.Y. Gutmanas, Dense in situ TiB2:TiN and TiB2:TiC ceramic matrix composites: reactive synthesis and properties, Materials Science and Engineering A244 (1998) 127-137.
  • [63] X.Z. Rong, T. Tsurumi, O. Fukunaga, T. Yano, High-pressure sintering of cBN-TiN-Al.-composite for cutting tool application, Diamond and Related Materials 11 (2002) 280-286.
  • [64] Sumimoto Electric Company: Patent US 4,334,063 (1982).
  • [65] Sumiya et al., Cutting tool of a cubic boron nitride sintered compact, Sumitomo Electric, patent nr: US 6,737,377 B1 (2004).
  • [66] Kanada et al., Cutting toll of polycrystalline hard sintered material, Sumitomo Electric, patent nr: US 6,612,786 B1 (2003).
  • [67] M. I. Eremets, High pressure Experimental Methods, Oxford University Press 1996.
  • [68] Definitions and Physical facts, Britannica.com and Encyclopedia Britannica, Inc. 1999-2000.
  • [69] C. A. Tulk, High-Pressure Techniques and Neutron Scattering, ACNS meeting, Knoxville, 2002.
  • [70] V. Celebonovic, Some possible astrophysical applications of diamond anvil cells, arXiv:astro-ph/9812374 v 1 20 Dec 1998.
  • [71] T. Matsumoto, J. Tang, N. MRI, High Pressure Apparatus for in Situ X-Ray Diffraction and Electrical Resistance Measurement at Low Temperature, The Rigaku Journal 15/2 (1998).
  • [72] H.T. Hall, Ultra-High-Pressure, High-Temperature Apparatus: the "Belt", Review of Scientific Instruments 31 (1960) 125-131.
  • [73] H.T. Hall, The "Belt": Ultra-High-Pressure, High-Temperature Apparatus, GE Report No: RL-1064, 1954.
  • [74] D. L. Decker, W. A. Bassett, L. Merrill, H. T. Hall, and J. D. Barnett, J. High-Pressure Calibration. A Critical Review, Journal of Physical and Chemical Reference Data 1 (1972).
  • [75] H.T. Hall, High-Pressure Apparatus, GE Report.
  • [76] K.S. Chan, T.L. Huang, T.A. Grzybowski, T.J. Whetten, A.L. Ruof, Pressure concentrations due to plastic deformation of thin films or gaskets between anvils, Journal of Applied Physics 53/10 (1982).
  • [77] Toroidal Devices For High Pressure Generation, materiały publikowane w Internecie przez Institute for High Pressure Physics, Troitsk, http://www.hppi.troitsk.ru/index.htm .
  • [78] H.T. Hall, L Merrill, Some High Pressure Studies on Ytterbium, Inorganic Chemistry 2/3 (1963) 618-624.
  • [79] E. Benko, A. Wyczesany, T.L.Barr, CBN - metal/metal nitride composites, Ceramics International 26 (2000) 639 - 644.
  • [80] E. Benko, X-ray absorption studies of the cBN composites containing Ti compounds, Light Advanced Source Users' Meeting, October 15-17, 2001, Berkeley Lab, 2001.
  • [81] E. Piskorska, K. Lawniczak-Jablonska, E. Benko, I.N. Demchenko, P. Klimczyk, E. Welter, R.C.C. Perera, P. Nachimathu, Chemical activations of the binding phase formation in cBN composites, Synchrotron Radiation in Natural Science, Bulletin of the Polish Synchrotron Radiation Society, 1/1 42.
  • [82] P.R. Le Clair, Titanium nitride thin films by the electron shower process, Massachusetts Institute of Technology, 1998.
  • [83] M. Mizuno, I. Tanaka, H. Adachi, Chemical bonding in titanium-metalloid compounds, Physical Review B, 59/23 (1999)15 033.
  • [84] H. Holleck, Material Selection for Hard Coatings, Journal of Vacuum Science and Technology A 4/6 (1986) 2661-2669.
  • [85] H. Pierson, Handbook of Refractory Carbides and Nitrides, Noyes Publications 1996.
  • [86] R. G. Munro, Material Properties of Titanium Diboride, Journal of Research of the National Institute of Standards and Technology, 105 (2000) 709-720.
  • [87] Wendell S. Williams, Transition metal carbides, nitrides, and borides for electronic applications, Journal of Materials, March 1997, P.38.
  • [88] Jörg Adler, Properties of pressureless-sintered TiC ceramics and TiC/SiC composites, Fraunhofer IKTS Jahresbericht (1998) 38.
  • [89] Yu. Ryabkov, P. Istomin and N. Chezhina, Structural design and properties of layered nanocomposite titanium carbide-silicide materials, Materials Physics and Mechanics 3 (2001) 101-107.
  • [90] A. Ondera, H. Hirano, T Yuasa, Static compression of Ti3SiC2 to 61 GPa, Applied Physics Letters 74/25 (1999) 3782.
  • [91] Sowmaya Arunajatesan, A.H. Carim, Symetry and crystal structure of Ti3SiC2, Materials Letters 20 (1994) 319-324.
  • [92] Sun Zhimei, Zhang Yi and Zhou Yanchun: Synthesis of Ti3SiC2 powders by a solid-liquid reaction process, Scripta Materialia, Vol. 41, No. 1, pp. 61-66, 1999.
  • [93] Yi Zhang, G.P. Ding, Y.C. Zhou, B.C. Cai: Ti3SiC2-a self-lubricating ceramic, Materials Letters 55 (2002) 285-289.
  • [94] Linh H. Ho-Duc, Synthesis and Characterization of the Properties of Ti3SiC2/SiC and Ti3SiC2/TiC Composites, Drexel University, 2002.
  • [95] T. El-Raghy, A. Zavaliangos, M.W. Barsoum, S.R. Kalidindi, *Damage Mechanisms around Hardness Indentations in Ti3SiC2, Journal of American Ceramic Society 80/2 (1997) 513-16.
  • [96] E.H. Kisi, J.A.A. Crossley, S. Mahyra, M.W. Barsoum, Structure and crystal chemistry of Ti3SiC2,, Journal of Physics and Chemistry of Solids 59/9 (1998) 1437-1443.
  • [97] M.W. Barsoum, T. El-Raghy, C.J. Rawn, W.D. Porter, H. Wang, E.A. Payzant, C.R Hubbard, Thermal properties ofTi3SiC2, J. Phys. Chem. Solids 60 (1999) 429-439.
  • [98] M. Radovic, M.W. Barsoum, T. El-Raghy, J. Seidensticker, S. Wiederhorn, Tensile properties of Ti3SiC2 in the 25-1300°C temperature range, Acta Materialia 48 (2000) 453-459.
  • [99] C.J. Gilbert, D.R. Bloyer, M.W. Barsoum, T. El-Raghy, A.P. Tomisia, R.O. Ritchie, Fatigue-crack growth and fracture properties of coarse and fine-grained Ti3SiC2, Scripta Materialia 42 (2000) 761-767.
  • [100] M. Radovic, M.W. Barsoum, T. El-Raghy, S. Wiederhorn, Tensile creep of fine grained (3-5 μm) Ti3SiC2 in the 1000-1200°C temperature range, Acta Materialia 49 (2001) 4103-4112.
  • [101] R. Pampuch, J. Lis, Ti3SiC2 a plastic ceramic metal.
  • [102] J. Lis, Y. Miyamoto, R. Pampuch, K. Tanihita, Ti3SiC2 based materials prepared by HIP-HSS techniques.
  • [103] J. Lis, R. Pampuch, L. Stobierski, Reactions during SHS in a Ti-Si-C system, International Journal of self-propagating Synthesis, 1/3 (1992).
  • [104] J. Lis, R. Pampuch, J. Piekarczyk, L. Stobierski, New ceramic based on Ti3SiC2, Ceramic International 19 (1993) 219-222.
  • [105] J. Morgiel, J. Lis, R. Pampuch, Microstructure of Ti3SiC2-based ceramics, Materials Letters 27(1996) 85-89.
  • [106] J. Lis, R. Pampuch, T. Rudnik, Z. Węgrzyn, Reaction sintering phenomena of self-propagating high-temperature synthesis-derived ceramic powders in the Ti-Si-C system, Solid State Ionics 101-103 (1997) 59-64.
  • [107] Ke Tang, Chang-an Wang, Yong Huang, Xingli Xu, Analysis on preferred orientation and purity estimation of Ti3SiC2, Journal of Alloys and Compounds 329 (2001) 136-141.
  • [108] Ke Tang, Chang-an Wang, Yong Huang, Qingfeng Zan, Growth model morphology of Ti3SiC2 grains, Journal of Crystal Growth 222 (2001) 130-134.
  • [109] R. Radhakrishnan, C.H. Henager, Jr., J.L. Brimhall, S.B. Bhaduri, Synthesis of Ti3SiC2/SiC composites using displacement reactions in the Ti-Si-C system, Scripta Materialia, 34/12 (1996) 1809-1814.
  • [110] Takashi Okano, Toyohiko Yano, Takayoshi Iseki, Synthesis and Mechanical Properties of Ti3SiC2 Ceramic, Transactions of the Materials Research Society of Japan 14A (1994).
  • [111] S. Takeuchi, T. Hasimoto, M. Nakamura, Plastic deformation of single crystals of TiSi2, Intermetallics 2 (1994) 289-296.
  • [112] B.J. Kool, M. Kabel, A.B. Kloosterman, J.TH.M. De Hosson, Reaction layers around SiC particles in Ti: an electron microscopy study, Acta Materialia 47/10 3105-3116.
  • [113] A. Makhatari, F. La Via, V. Raineri, L. Calcagano, F. Frisiana, Structural characterization of titanium silicon carbide reaction, Microelectronic Engineering 55 (2001) 375-381.
  • [114] W. Jetschko, H. Nowotny, Die Kristallstruktur von Ti3SiC2 - ein neuer Komplexcarbid-Typ, Monatshefte für Chemie 98 (1967) 329.
  • [115] R. Radhakrishnan, J.J. Williams, M. Akinc, Synthesis and high - temperature stability of Ti3SiC2, Journal of Alloys and Compounds 285 (1999) 85-88.
  • [116] C.H. McMurtry, W.D.G. Boecker, S.G. Seshadri, J.S. Zanghi, J.E. Garnier, Microstructure and Material Properties of SiC-TiB2 Particulate Composites, American Ceramic Society Bulletin, 66/2 (1987) 325-329.
  • [117] H. Itoh, Y. Tsunekawa, S. Tago, and H. Iwahara, Synthesis and Sinterability of Composite Powder of the TiB2-B4C System, Journal of Alloys and Compounds, 191 (1993) 191-195.
  • [118] M. Desmaison-Brut, L. Themelin, F. Valin, M. Boncoeur, Mechanical Properties of Hot-Isostatic-Pressed Titanium Nitride, Euro-Ceramics, 3 (1989) 258-262.
  • [119] C. Mroz, Titanium Diboride, American Ceramic Society Bulletin, 73/6 (1994) 136-137.
  • [120] Internetowa baza danych, http://www.eng.ku.ac.th/~mat/MatDB/MatDB/main.htm .
  • [121] R.A. Cutler, Engineering Properties of Borides, Engineered Materials Handbook, 4 (1991) 787-803.
  • [122] M.E. Schlesinger, Melting Points, Crystallographic Transformation and Thermodynamic Values, Engineered Materials Handbook, 4 (1991) 883-891.
  • [123] Materiały firmy BryCoat dostępne na stronie http://www.brycoat.com/tin/physprop.html .
  • [124] Materiały firmy General Electric dostępne na stronie www.advceramics.com .
  • [125] I.A Petruša, A.A. Šuîženko, S.A. Klimenko, N.P. Beženar, A.S. Osipov, S.A. Božko, S.N. Dub, Deformacionno-upročnennyj kompozit na osnove cBN dlǎ lezvijnoj obrabotki nikelevyh splavov, Sverhtverdye materialy 2 (2002).
  • [126] E. Benko, A. Wyczesany, A. Bernasik, T.L.Barr, E. Hoppe, CBN - Cr/Cr3C2 composite materials: chemical equilibria, XPS investigations, Ceramics International 26 (2000) 545 - 550.
  • [127] E. Benko, K. Lawniczak-Jablonska, I.N. Demchenko, E. Piskorska, A. Benko, P. Klimczyk, R.C.C Perera, T.L. Barr, X-ray absorption studies of the cBN/Ti compounds systems, Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen-Synchrotron DESY 2001.
  • [128] E. Benko, T.L. Barr, S. Hardcastle, E. Hoppe, A. Bernasik, J. Morgiel, XPS study of the cBN-TiC system, Ceramic International 27 (2001) 637-643.
  • [129] E. Benko, K. Lawniczak-Jablonska, P. Nachimuthu, I.N. Demchenko, E. Piskorska, P. Klimczyk, R.C.C. Perera, A. Włochowicz, A. Benko, T.L. Barr, X-ray absorption studies of the cBN composites with different binding phases, Advanced Light Source, Activity Report, Berkeley 2002.
  • [130] E. Benko, P. Klimczyk, J. Morgiel, A. Włochowicz, T.L Barr, Electron microscopy investigations of the cBN - Ti compound composites, Materials Chemistry and Physics 81 (2003) 336-340.
  • [131] E. Piskorska, K. Lawniczak-Jablonska, I.N. Demchenko, E. Benko, E. Welter, X-ray absorption studies of phases formation in Ti/TiN coating on cubic boron nitride, Journal of Alloys and Compounds 362 (2004) 171-177.
  • [132] E. Benko, P. Klimczyk, S. Mackiewicz, T.L. Barr, E. Piskorska, CBN - Ti3SiC2 composite, Diamond and Related Materials 13 (2004) 521-525.
  • [133] E. Benko, T.L. Barr, A. Bernasik, S. Hardcastle, E. Hoppe, E. Bielańska, P. Klimczyk, Experimental and calculated phase equilibria in the cubic BN-Ta-C system, Ceramics International 30 (2004) 31-40.
  • [134] P. Klimczyk, E. Benko, K. Lawniczak-Jablonska, E. Piskorska, M. Heinonen, A. Ormaniec, W. Gorczynska-Zawislan, V.S. Urbanovich, Cubic boron nitride - Ti/TiN composites: hardness and phase equilibrium as function of temperature, Journal of Alloys and Compounds 382 (2004) 195-205.
  • [135] S. Seal, H. Underwood, M. Uda, H. Osawa, A. Kanai, T.L. Barr, E. Benko, A. Krauss, R.C.C. Perera, Efect of temperature on Ti and TiN films deposited on a BN substrate, Journal of Vacuum Science and Technology A16/3 (1998).
  • [136] W. P. Smith, R. W. Missen, Chemical Reaction Equilibrium Analysis; Theory and Algoritms, John Wiley & Sons, New York 1982.
  • [137] D. R. Stull, M. Prophet, JANAF Termochemical Tables, 2nd ed., National Bureau of Standarts, NSRDS- NBS37, Washington, DC 1971.
  • [138] G.C. Kennedy, P.N. La Mori, The Pressure of Some Solid-Solid Transitions, Journal of Geophysical Research 67/2 (1962) 851-856.
  • [139] E. Piskorska, K. Lawniczak-Jablonska, E. Benko, I. N. Demchenko, P. Klimczyk, R. Minikayev, A. Witkowska, E. Welter, M. Heinonen, Characterization of the c-BN/TiC, Ti3SiC2 systems by element selective spectroscopy, Journal of Alloys and Compounds, 382/1-2 (2004) 187-194.
  • [140] A. Oleś, Metody doświadczalne fizyki ciała stałego, WNT, Warszawa 1998.
  • [141] S. Mackiewicz, Theoretical model for calculation of elastic constants of composite materials based on policrystaline diamond and cubic boron nitride, Workshop on Nondestructive Testing of materials and structures, Warsaw, May 19-21,2003.
  • [142] M.P. D'Everyn, K. Zgonc, Elastic Properties of Polycrystalline Cubic Boron Nitride and Diamond by Dynamic Resonance Measurements, General Electric R&D Center, Report nr 97CRD030, March 1997.
  • [143] M.P. D'Everyn, K. Zgonc, Elastic Properties of Polycrystalline Cubic Boron Nitride and Diamond by Dynamic Resonance Measurements, Diamond and Related Materials 6 (1997) 812-816.
  • [144] M.P. D'Everyn, T. Taniguchi, Elastic Properties of Translucent Polycrystalline Cubic Boron Nitride as Characterized by the Dynamic Resonance Method, General Electric R&D Center, Report nr 98CRD148, October 1998.
  • [145] M.P. D'Everyn, T. Taniguchi, Elastic Properties of Translucent Polycrystalline Cubic Boron Nitride as Characterized by the Dynamic Resonance Method, Diamond and Related Materials 8 (1999) 1522-1526.
  • [146] Won Ha Moon, Ho Jung Hwang, Atomistic study of elastic constants and thermodynamic properties of cubic boron nitride, Materials Science and Engineering B103 (2003) 253-257.
  • [147] Grimsdkch and Zoubolis E.S., Elastic constants of boron nitride, Journal of Applied Physics 76/2 (1994).
  • [148] Lammer A, Mechanical properties of polycrystalline diamonds, Materials Science and Technology 4 (1988) 949-955.
  • [149] T.P. Lin, G.A. Cooper, M. Hood, Measurement of the fracture toughness of polycrystalline diamond using the double torsion test, Journal of Materials Science 29 (1994) 4750-4756.
  • [150] Takashi Taniguchi, Minoru Akaishi, Shinobu Yamaoka, Mechanical Properties of Polycrystalline Translucent Cubic Boron Nitride as Characterized by the Vickers Indentation Method, Journal of American Ceramic Society 79/2 (1996) 547-49.
  • [151] A. Śliwiński, Ultradźwięki i ich zastosowania, WNT, Warszawa 2001.
  • [152] A. Lewińska - Romicka, Badania nieniszczące Podstawy defektoskopii, WNT, Warszawa 2001.
  • [153] A. Boruszak, R. Sygulski, K. Wrześniowski, Wytrzymałość materiałów -doświadczalne metody badań, PWN, Warszawa 1984.
  • [154] J. Obraz, Ultradźwięki w technice pomiarowej, WNT, Warszawa 1983.
  • [155] S. Mackiewicz, Badania radiograficzne, ultradźwiękowe, i mikroskopowe polikrystalicznych materiałów kompozytowych, (raport z badań cz.l.), Ośrodek Rzeczoznawstwa i Postępu Technicznego, Warszawa 1998.
  • [156] S. Mackiewicz, Badania radiograficzne, ultradźwiękowe, i mikroskopowe polikrystalicznych materiałów kompozytowych, (raport z badań cz.2.), Ośrodek Rzeczoznawstwa i Postępu Technicznego, Warszawa 1998.
  • [157] S. Mackiewicz, Badania ultradźwiękowe materiałów kompozytowych, Badania Nieniszczące 5 24-30.
  • [158] S. Mackiewicz, Pomiar współczynnika tłumienia fal ultradźwiękowych metodą analizy widmowej impulsów, 16 Krajowa Konferencja Badań Nieniszczących.
  • [159] S.G. Roberts, P.D. Warren, Hardness anisotropies: a new approach, Materials Science and Engineering A 105/106 (1998) 19-28.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0027-0034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.