Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Mieszanina rozkładów jako rozkład czasów życia obiektu technicznego
Języki publikacji
Abstrakty
The lifetime distribution is very important in reliability studies. The shape of lifetime distribution can vary considerably; therefore, it frequently cannot be approximated by simple distribution functions. This article is connected with the problem of finding of lifetime distribution with a unimodal failure rate function. For this purpose, the mixture of two distributions has been considered. We show that a unimodal failure rate function can be obtained as a failure rate function of the mixture of an exponential and Rayleigh distributions. The numerical examples are also provided to illustrate the practical impact of this approach.
Rozkłady czasów życia są bardzo ważne w badaniach niezawodnościowych. Kształt dystrybuanty czasu życia można badać dokładnie i wtedy często nie można go aproksymować przez proste rozkłady. Pokazujemy, że jednomodalną funkcję intensywności uszkodzeń można utrzymać jako funkcję intensywności uszkodzeń mieszaniny rozkładu wykładniczego i rozkładu Rayleigha. W celu pokazania praktycznego znaczenia tego podejścia podano przykłady numeryczne.
Rocznik
Tom
Strony
53--59
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- University of Technology and Life Science, Bydgoszcz, Department of Applied Mathematics, Kaliskiego st. 7, 85-789 Bydgoszcz, Poland, phone 52 340 8208, knopikl@utp.edu.pl
Bibliografia
- [1] Aalen O.O., Gjessing H.K.: Understanding the shape of hazard rate: a process point view, Statistical Science. 2001,16, pp. 1-22.
- [2] Alison P.D.: Event History Analysis, Sage, 1984.
- [3] Block H.W., Joe H.: Tail behavior of the failure rate function of mixtures, Lifetime Data Analysis, 1997, 3, pp. 269-288.
- [4] Block H.W., Savits T.H.: Burn-in, Statistical Science 1997, 12, 1-13.
- [5] Block H.W., Savits T.H., Wondmagegnehu E.T.: Mixtures of distributions with increasing linear failure rates. Journal Application Probability, 2003, 40, pp. 485-504.
- [6] Chang D.S.; Optimal burn - in decision for products with an unimodal failure rate function, European J. Oper. Res. 2000, 126. pp. 584-640.
- [7] Gleser L.J.: The gamma distribution as a mixture of exponential distributions. American Statistics, 1989, 43, pp. 115-117.
- [8] Gupta G.L., Gupta R.C.: Ageing characteristics of the Weibull mixtures, Probability in the Engineering and Information Science, 1996, 10, pp. 591-600.
- [9] Gurland J., Sethuraman I.; How pooling failure data may reverse increasing failure rates when pooling failure data, Technometrics, 1984, 36, pp. 416-418.
- [10] Jiang R., Ji P., Xiao X.: Ageing property of unimodal failure rate models, Reliability Eng. System Safety, 2003, 79, pp. 113-116.
- [11] Klutke G.A., Kiessler P.C., Wortman M.A.: A critical look at the bathtub curve, IEEE Transaction on Reliability, 2003, 54, pp. 125-3 29.
- [12] Mudholkar G.S., Srivastava D.K., Feimer M.: The exponentiated Weibull family: a reanalysis of the bus-motor failure data, Technometrics, 1995, 37, pp. 436-475.
- [13] Proschan F.: Theoretical explanation of observed decreasing failure rate, Technometrics 1963, 5, pp. 375-383.
- [14] Rajarschi S., Rąjarshi M.B.: Bathtub distributions: A review. Comm. Statist. 1988, 17, pp 2597-2621.
- [15] Vaupel J.W., Yashin A.I.: Some surprising effects of selection on population dynamics, American Statistics, 1985, 39, pp. 176-184.
- [16] Wang T., Muller H., Capra W.B.: Analysis of oldest-old morality: lifetimes revisited. Annals Statistic, 1998, 26, pp. 126-133.
- [17] Wdzięczny W., Woropay M., Muślewski Ł.: Division and investigation of damages to technical objects and their influence on the reliability of operations of complex operation and maintenance systems. Scientific Problems of Machines Operation and Maintenance 2 (154), 2008, pp. 31-43.
- [18] Wondmagegnehu E.T.: On the Behavior and shape of Mixture Failure Rate Family of IFR Weibull Distributions, Naval Research Logistics, 2004, 51, pp. 491-500.
- [19] Wondmagegnehu E.T., Nawarro J., Hernandez P.J.: Bathtub Shaped Failure Rate From Mixture: A practical Point of View, IEEE Transaction on Reliability, 2005, 54, pp. 270-276.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0027-0005