PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prognozowanie wytrzymałości połączeń klejowych przy wykorzystaniu sieci neuronowych

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Predicting the strength of adhesive joints using neural networks
Języki publikacji
PL
Abstrakty
EN
This paper presents the results of the analysis of suitability of artificial intelligence for processing of experimental information related to strength of adhesive joints. The efficiency of neuron artificial network was compared with the efficiency of typical methods of statistical analysis such as linear and polynomial regress. The research was conducted, based on a statical, determinated multifactorial program. The list of arguments comprised length of overlap, thickness of adhesive layer, thickness of joined materials, geometrical parameters of surface. The output result was the load capacity as a force needed to destruct an adhesive joint. The research was done in the situation, when other parameters affecting the strength of adhesive joint were stable. The surface answers of network for entrance parameters combination for the defined nodal point, presented in this paper, indicate non-linear influence of testing parameters on adhesive joints strength. The influence of average square ordinates of roughness profile is close to linear. However, its influence changes following the change of other parameters. The presented graphs show, that the highest adhesive joints strength is a function of complicated relations between the geometrical parameters of joints. The example results presented in this paper, enable to state that the artificial neuron network, thanks to the credibility of modeling and predicting the strength of adhesive joints, can serve as a base of knowledge for constructors and technologists, using adhesive joints in designed constructions. These networks can significantly commit to the increased quality of products and decrease the construction cost.
Twórcy
  • Politechnika Lubelska
Bibliografia
  • 1. Barnes T.A., Pashby I.R.: Joining techniques for aluminums spaceframes used in automobiles. Part II - adhesive bonding and mechanical fasteners. Journal of Materials Processing Technology 99 (2000), pp. 72-79.
  • 2. Domińczuk J.: Technologia klejenia w montażu i regeneracji. Technologia i Automatyzacja Montażu, 3/2003, s. 3 - 9.
  • 3. Dragoni E., Mauri P.: Cumulative static strength of tightened joints bonded with anaerobic adhesives. Proc. Instn. Mech. Engrs. Vol. 216. Part L: J. Materials: Design and Applications. (2001), pp. 9-15.
  • 4. Hart-Smith L. J., Strindberg G.: Developments in adhesively bonding the wings of the SAAB 340 and 2000 aircraft. Proc. Instn. Mech. Engrs. Vol. 211, PartG. 1997, 133-156.
  • 5. Kinloch A. J.: Adhesives in engineering. Proc. Instn. Mech. Engrs. Vol. 211, Part G. 1997, pp. 307-335.
  • 6. Steven R. Armstrong, Daniel B. Boyer, John C. Keller: Microtensile bond strength testing and failure analysis of two dentin adhesives. Dent Mater 14:44-50, January, 1998.
  • 7. Loftus D., Found M. S., Yates J. R.: The performance of aluminium to carbon fibre composite bonded joints in motorsport applications. Sports Engineering (1999) 2, 235-243.
  • 8. Gengkai Нu: Mixed mode fracture analysis of adhesive lap joints. Composites Engineering. Vol. 5, No. 8, pp. 1043-1050, 1995.
  • 9. Kum Cheol Shin, Jung Ju Lee, Dai Gil Lee: A study on the lap shear strength of a co-cured single lap joint. J. Adhesion Sci. Technol., Vol. 14, No. 1, pp 123-139 (2000).
  • 10. Erol Sancaktar, Sean R. Simmons: Optimization of adhesively-bonded single lap joints by adherend notching. J. Adhesion Sci. Technol., Vol. 14, No. 11, pp. 1363-1404 (2000).
  • 11. Erol Sancaktar, Sumeet Kumar. Selective use of rubber toughening to optimize lap-joint strength. J Adhesion Sci. Technol., Vol. 14, No. 10, pp. 1265-1296 (2000).
  • 12. J. Domińczuk: Design basis of surface layer energetic states. The 4-th International Scientific Conference - Development of metal cutting DMC 2002, pp. 91 -94.
  • 13. Kuczmaszewski J.: Fundamentals of metal-metal adhesive joint design. Lublin University of Technology: Polish Academy of Sciences, Lublin Branch, 2006.
  • 14. K. Sławińska: Wyroby epoksydowe z Zakładów Chemicznych "Organika - Sarzyna", "Polimery", nr 11-12 (43)/1998 r., s. 741 -746.
  • 15. PN-EN 1465:2003: Kleje. Oznaczanie wytrzymałości na ścinanie przy rozciąganiu połączeń na zakładkę materiału sztywnego ze sztywnym.
  • 16. Carling Α.: Introducing Neural Networks. Wilmslow, UK: Sigma Press (1992).
  • 17. Tadeusiewicz R.: Neural networks. Academic Publishing House. Warszawa 1993.
  • 18. D. Patterson: Artificial Neural Networks. Singapore: Prentice Hall (1996).
  • 19. Fausett L.: Fundamentals of Neural Networks. New York: Prentice Hall (1994).
  • 20. Domińczuk J:. Synteza wpływu wybranych czynników konstrukcyjnych i technologicznych na wytrzymałość połączeń klejowych. Przegląd Mechaniczny 6'06, s. 23-28.
  • 21. Kuczmaszewski J:. Podstawy konstrukcyjne i technologiczne oceny wytrzymałości adhezyjnych połączeń metali. WU Politechnika Lubelska, 1995.
  • 22. Domińczuk J., Kuczmaszewski J.: Modelling of adhesive joints and predicting their strength with the use of neural networks. ELSEVIER. Computational Materials Science, Vol. 43 (2008), pp. 165 - 170.
  • 23. Godzimirski J.: Wytrzymałość doraźna konstrukcyjnych połączeń klejowych. WNT, Warszawa 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0025-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.