PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of cavitation and its effects on superplastic deformation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To study the effects of cavitation on the superplastic deformation using finite element method. Design/methodology/approach: Using constitutive equations for superplastic deformation, and taking into account the effects of grain growth and cavitation growth, Zn-Al and LY12CZ alloys are used for simulations to show effects of m values, elongation-to-failure values, percentage cavities and effects of imposed hydrostatic pressure during superplastic forming processes. Findings: During superplastic deformation, cavitation damage increases with the increase in strain. For high strain rate sensitivity, necking develops which leads to final fracture; whereas for low strain strain rate sensitivity, the final fracture is due to cavitation growth. Research limitations/implications: The effects of material parameters and deformation damage on the superplastic deformation process are numerically analyzed, and the means to control cavitation growth is discussed. Originality/value: A three dimensional viscoplastic finite element programe, taking into account of microstructural mechanisms, such as test temperature and cavity growth has been developed for superplastic deformation.
Rocznik
Strony
7--10
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
autor
autor
  • School of Mechanical & Aerospace Engineering, Nanyang Technological University, 639798, Singapore, mmjtan@ntu.edu.sg
Bibliografia
  • [1] A.K. Ghosh, R. Raj, Grain size distribution effects in superplasticity, Acta Metallurgica 29 (1981) 607-616.
  • [2] D.S. Wilkinson, C.H. Caceres, On the mechanism of strain-enhanced grain growth during superplastic deformation, Acta Metallurgica 32 (1984) 1335-1345.
  • [3] M.F. Ashby, R.A. Verrall, Diffusion-accommodated flow and superplasticity, Acta Metallurgica 21 (1973) 149-163.
  • [4] A.K. Mukherjee, The rate controlling mechanism in superplasticity, Materials Science and Engineering 8 (1971) 83-89.
  • [5] A. Ball, M.M. Hutchinson, Journal of Materials Science 3 (1969) 1.
  • [6] B. Baudelet, J. Lian, A Composite Model for Superplasticity, Journal of Materials Science 30 (1995) 1977-1981.
  • [7] Z. He, X. He, A study on the deformation of metals, Journal of Materials Processing and Technology 88 (1999) 1-9.
  • [8] D.J. Zhou, J.S. Lian, Numerical analysis of superplastic bulging for cavity-sensitive materiale, International Journal of Mechanical Sciences 29 (1987) 565-576.
  • [9] Y. Song, J. Zhao, A mechanical analysis of the superplastic free bulging of metal sweet, Materials Science and Engineering A 84 (1986) 111-125.
  • [10] J. Lian, B. Baudelet, Necking Development and Strain to Fracture under Uniaxial Tension, Materials Science and Engineering 84 (1986) 157-162.
  • [11] C.C. Bampton, R. Raj, Influence of hydrostatic pressure and multiaxial straining on cavitation in a superplastic aluminum alloy, Acta Metallurgica 30 (1982) 2043-2053.
  • [12] C.C. Bamption, M.W. Mahoney, C.H. Hamilton, A.K. Ghosh, R. Raj, Control of Superplastic Cavitation by Hydrostatic Pressure, Metallurgical and Materials Transactions A 14 (1983) 1583-1593.
  • [13] A.K. Ghosh, C.H. Hamilton, Influences of material parameters and microstructure on superplastic forming, Metallurgical and Materials Transactions A 13 (1982) 733-742.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0021-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.