PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Methods of preparing polymeric gradient composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The goal of this work is to introduce basic methods of preparing polymeric gradient materials, which allow to join two different components to ensure the required properties and structure of the functionally gradient materials. Design/methodology/approach: In this paper few of methods of preparing functionally gradient polymeric materials are briefly described which were successful employed in many investigations performed during last few years. Findings: It was noticed that the knowledge about polymeric gradient materials is still developing what can allow to manufacture new products characterized by unique properties. Research limitations/implications: Most of methods presented in this paper are also used for conventional products, the difference between conventional products and products with gradient are quantity of components, shape and size of reinforcements, and properties of ready materials. Practical implications: Presented methods can be applied in preparing FGMs for future research programmes and also in industrial processes. Originality/value: Techniques are presented that can be useful in future scientific work concerning functionally gradient materials containing polymer materials.
Rocznik
Strony
67--70
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
autor
  • Division of Metal and Polymer Materials Processing, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18 a, 44-100 Gliwice, Poland, agnieszka.dybowska@polsl.pl
Bibliografia
  • [1] M. Koizumi, FGMs activities in Japan, Composites Part B 28B (1997) 1-4.
  • [2] J. Aboudi, M.J. Pindera, S.M. Arnold, Higher-order theory for functionally graded materials, Composites B 30 (1999) 777-832.
  • [3] L.A. Dobrzański, A. Kloc-Ptaszna, A. Dybowska, G. Matula, E.Gordo, J.M.Torralba, Effect of WC concentration on structure and properties of the gradient tool materials, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 91-94.
  • [4] L.A. Dobrzański, L. Wosińska, K. Gołombek, J. Mikuła, Structure of multicomponent and gradient PVD coatings deposited on sintered tool materials, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 99-102.
  • [5] L. Jaworska, M. Rozmus, B. Królicka, A. Twardowska, Functionally graded cermets, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 73-76.
  • [6] R.A. Krektuleva, Computer-aided design of high-strength gradient materials operating under dynamic loads, Strength of Materials 35/1 (2003) 82.
  • [7] N. Desilles, L. Lecamp, P. Lebaudy, C. Bunel, Gradient structure materials from homogeneous system induced by UV photopolymerization, Polymer 44 (2003) 6159-6167.
  • [8] B. Kieback, A. Neubrand, H. Riedel, Processing techniques for functionally graded materials, Materials Science and Engineering A362 (2003) 81-105.
  • [9] B. Wen, G. Wu, J. Yu, A flat polymeric gradient material: preparation, structure and property, Polymer 45 (2004) 3359-3365.
  • [10] Y. Agari, Y. Anan, R. Nomura, Y. Kawasaki, Estimation of the compositional gradient in a PVC/PMMA graded blend prepared by the dissolution-diffusion method, Polymer 48 (2007) 1139-1147.
  • [11] X.M. Xie, T.J. Xiao, Z.M. Zhang, A. Tanioka, Effect of interfacial tension on the formation of the gradient morphology in polymer blends, Journal of Colloid and Interface Science 206 (1998) 189-194.
  • [12] M.T. Tilbrook, L. Rutgers, R.J. Moon, M. Hoffman, Fatigue crack propagation resistance in homogeneous and graded alumina-epoxy composites, International Journal of Fatigue 29 (2007) 158-167.
  • [13] M. Krumova, C. Klingshirn, F. Haupert, K. Friedrich, Microhardness studies on functionally graded polymer composites, Composites Science and Technology 61 (2001) 557-563.
  • [14] N. Chand, U.K. Dwivedi, M.K. Sharma, Development and tribological behaviour of UHMWPE filled epoxy gradient composites, Wear 262 (2007) 184-190.
  • [15] J. Jang, S. Han, Mechanical properties of glass-fibre mat/PMMA functionally gradient composite, Composites A30 (1999) 1045-1053.
  • [16] N.J. Lee, J. Jang, The effect of fibre-content gradient on the mechanical properties of glass-fibre-mat/polypropylene composites, Composites Science and Technology 60 (2000) 209-217.
  • [17] P. Tsotra, K. Friedrich, Electrical and mechanical properties of functionally graded epoxy-resin/carbon fibre composites, Composites Part A 34 (2003) 75-82.
  • [18] J. Jang, Ch. Lee, Fabrication and mechanical properties of glass fibre-carbon fibre polypropylene functionally gradient materials, Journal of Materials Science 33 (1998) 5445-5450.
  • [19] R.J. Butcher, C.-E. Rousseau, H.V. Tippur, A functionally graded particulate composite: preparation, measurements and failure analysis, Acta Materialia 47/1 (1999) 259-268.
  • [20] M. Funabashi, Gradient composites of nickel coated carbon fibre filled epoxy resin moulded under centrifugal force, Composites 28A (1997) 731-737.
  • [21] S.A.R. Hashim, U.K. Dwivedi, Estimation of concentration of particles in polymerizing fluid during centrifugal casting of functionally graded polymer composites, Journal of Polymer Research 14 (2007) 75-81.
  • [22] Y. Watanabe, A. Kawamoto, K. Matsuda, Particle size distributions in functionally graded materials fabricated by the centrifugal solid-particle method, Composites Science and Technology 62 (2002) 881-888.
  • [23] J.H. Lee, S.J. Lee, G. Khang, H.B. Lee, The effect of fluid shear stress on endothelial cell adhesiveness to polymer surfaces with wettability gradient, Journal of Colloid and Interface Science 230 (2000) 84-90.
  • [24] Y. Iwasaki, S. Sawada, N. Nakabayashi, G. Khang, H-B Lee, K. Ishihara, The effect of the chemical structure of the phospholipid polymer on fibronectin adsorption and fibroblast adhesion on the gradient phospholipid surface, Biomaterials 20 (1999) 2185-2191.
  • [25] H. Li, J. Lambros, B.A. Cheesemas, M.H. Santare, Experimental investigation of the quasi-static fracture of functionally graded materials, International Journal of Solids and Structures 37 (2000) 3715-3732.
  • [26] H. Chung, S. Das, Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering, Material Science and Engineering A 437 (2006) 226-234.
  • [27] L. Jepson, J. Beaman, D. Bourell, K. Wood, SLS processing of functionally graded materials, Solid Freeform Fabrication Proceedings, Austin, 1997, 67-80.
  • [28] M. Wang, D. Porter, W. Bonfield, Processing, characterization and evolution of hydroxyapatite reinforced polyethylene composites, British Ceramic Transactions 93 (1994) 91-95.
  • [29] W.Pompe, H.Worch, M.Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, K. Schulte, Functionally graded materials for biomedical applications, Materials Science and Engineering A 362 (2003) 40-60.
  • [30] B.Królikowski, (and other), Plastics: Handbook, WNT., Warsaw, 2000 (in Polish).
  • [31] S.R.A. Hashmi, U.K. Dwivedi, Estimation of concentration of particles in polymerizing fluid during centrifugal casting of functionally graded polymer composites, Journal of Polymer Research 14 (2007) 75-81.
  • [32] M. Żenkiewicz, Adhesion and modification the surface layer of high-molecular materials, WNT, Warsaw, 2000 (in Polish).
  • [33] J. Zeschky, T. Hofner, C. Arnold, R. Weissmann, D. Bahloul-Hourlier, M. Scheffler, P. Greil, Polysilsesquioxane derived ceramic foams with gradient porosity, Acta Materialia 53 (2005) 927-937.
  • [34] J. Nowacki, Metal and metal matrix composites sintering, WNT, Warsaw, 2005 (in Polish).
  • [35] R.T. Sikorski, Foundations of chemistry and technology of polymers, PWN, Warsaw, 1985 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0021-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.