PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cavitation and grain growth during superplastic forming

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the paper is to study the cavitation and grain growth during superplastic forming. Design/methodology/approach: Superplastic alloys exhibit the extremely large elongation to failure by their high strain rate sensitivity. Cavities have widely been observed during superplastic deformation of metals and alloys and lead to the degradation of material properties such as tensile, creep, fatigue and stress-corrosion behavior. In this work, a finite element method is developed, which considers the grain growth and the effect of material damage. Findings: The effects of material parameters and deformation damage on the superplastic deformation process are numerically analyzed, and the means to control cavitation growth is discussed. The microstructural mechanism of grain growth during superplastic deformation is also studied. A new model considering the grain growth is proposed and applied to conventional superplastic materials. The relationships between the strain, the strain rate, the test temperature, the initial grain size and the grain growth respectively in superplastic materials are discussed. Practical implications: The effect of variation of strain rate sensitivity (in value) on the strain limit of the superplastic deformation is investigated, and the theoretically calculated values are compared with the experimental results. Originality/value: A new microstructure model based on the microstructural mechanism of superplastic deformation has been proposed. This model has been successfully applied to analyze conventional superplastic materials.
Rocznik
Strony
307--314
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
autor
autor
  • School of Mechanical & Aerospace Engineering, Nanyang Technological University, 639798 Singapore, mmjtan@ntu.edu.sg
Bibliografia
  • [1] A.K. Ghosh, R. Raj, Grain size distribution effects in superplasticity, Acta Metallurgica 29 (1981) 607-616.
  • [2] D.S. Wilkinson, C.H. Caceres, On the mechanism of strain-enhanced grain growth during superplastic deformation, Acta Metallurgica 32 (1984) 1335-1345.
  • [3] M.F. Ashby, R.A. Verrall, Diffusion-accommodated flow and superplasticity, Acta Metallurgica 21 (1973) 149-163.
  • [4] A.K. Mukherjee, The rate controlling mechanism in superplasticity, Materials Science and Engineering 8 (1971) 83-89.
  • [5] A. Ball, M.M. Hutchinson, Superplastic behaviour of rapidly solidified Al-5Mg-1.2Cr alloy, Journal of Materials Science 3 (1969) 1.
  • [6] B. Baudelet, J. Lian, A composite model for superplasticity, Journal of Materials Science 30 (1995) 1977-1981.
  • [7] Z. He, X. He, A study on the deformation of metals, Journal of Materials Processing and Technology 88 (1999) 1-9.
  • [8] D.J. Zhou, J.S. Lian, Numerical simulation of cavity damage evolution in superplastic bulging process, International Journal Mechanical Sciences 29 (1987) 565-576.
  • [9] Y. Song, J. Zhao, Materials Science and Enginering A 84 (1986) 111-123.
  • [10] J. Lian, B.Baudelet, Materials Science and Engineering A 84 (1986) 157-162.
  • [11] C.C. Bampton, R. Raj, Influence of hydrostatic pressure and multiaxial straining on cavitation in a superplastic aluminum alloy, Acta Metallurgica 30 (1982) 2043-2053.
  • [12] C.C. Bampton, M.W. Mahoney, C.H. Hamilton, A.K. Ghosh, R.Raj, Metallurgical and Materials Transactions A 15 (1983) 583-591.
  • [13] A.K. Ghosh, C.H. Hamilton, Metallurgical and Materials Transactions A 13 (1982) 733-742.
  • [14] P.A. Beck, J.C. Kremer, L.J. Demer, M.J. Holzworth, AIME, Metals Technology (1947).
  • [15] J.E. Burke, D. Turnbull, Progress in Metal Physics 3 (1952) 22.
  • [16] J. Lian, R.X. Valiev, B. Baudelet, On the enhanced grain growth in ultrafine grained metals, Acta Metallurgica 43 (11) (1995) 4165-4170.
  • [17] M.F. Ashby, R.A. Verrall, Diffusion-accommodated flow and superplasticity, Acta Metallurgica 21 (1973) 149-163.
  • [18] A. Ball, M.M. Hutchinson, Superplastic behaviour of rapidly solidified Al-5Mg-1.2Cr alloy, Journal of Materials Science 3 (1969).
  • [19] A.K. Mukherjee, The rate controlling mechanism in superplasticity, Materials Science and Engineering 8 (1971) 83-89.
  • [20] V.D. Campenni, C.H. Caceres, Strain enhanced grain growth at large strains in a superplastic ZnAl alloy, Scripta Metallurgica 22 (1988) 359-364.
  • [21] FA. Mohamed, M.M. I. Ahemd, T.G. Langdon, Metallurgical and Materials Transactions 8A (1977) 933-938.
  • [22] G.B. Brook, Sheet Metal Industries 58 (1981) 801-809.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0021-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.