PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Damage mechanisms of Ti-Al intermetallics in three point ultrasonic bending fatigue

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Damage mechanisms of two phases (alpha2-Ti3Al and gamma-Ti-Al) intermetallics alloy are investigated at room temperature in a new developed resonance type 3- point (3P) fatigue bending test device at a frequency of 20 kHz. Design/methodology/approach: Manufacturing and analysis of composition of this alloy were carried out in advanced materials laboratory by collaborating with aircraft design engineering department for non-ferrous metal research centre in China. All of the 3P- fatigue bending were carried out at the stress ratios of R=0.1, R=0.5, R=0.7 mainly in gigacycle regime. Findings: Damage mechanisms were compared in static and dynamic test conditions. The geometries of static tensile test and ultrasonic fatigue test specimens have been calculated by analytical or numerical method as discussed in detail formerly. This paper gives further results and more complicate discussion on this study particularly on the crack formation and the role of the different parameters on the damage mechanisms of this alloy. Damage analysis was made by means of optical (OM) and Scanning Electron Microscopies (SEM). Research limitations/implications: Paper gives results and more complicate discussion on the crack formation and the role of the different parameters on the damage mechanisms of this alloy. Originality/value: This study proposes a new methodology for fatigue design and a new idea on the criterion for the damage under very high cycle fatigue regime. The results are well comparables for the specimens under real service conditions. This type of study gives many facilities for the sake of simplicity in industrial application.
Rocznik
Strony
153--161
Opis fizyczny
Bibliogr. 24 poz., fot., rys., tab.
Twórcy
autor
autor
autor
Bibliografia
  • [1] J.J. Kruzic, J.P. Campbell, O. Ritchie, On the fatigue behaviour of g-based titanium aluminides: Role of small cracks, Acta materialia 47/3 (1999) 801-816.
  • [2] Y.S. Park, S.W. Nam, S.K. Hwang, N.J. Kim, The effect of the applied strain range on fatigue cracking in lamellar Ti-Al alloy, Journal of Alloys Compounds 335 (2002) 216-223.
  • [3] J.P. Campbell, R.K.T. Venkateswara, R.O. Ritchie, The effect of microstructure on fracture toughness and fatigue crack growth behaviour in γ-titanium aluminides based intermetallics, Metallurgica Materials Transanction A 30/3 (1999) 565.
  • [4] J.P.Campbell, J.J. Kruzic, S. Lillibridge, K.T.V. Rao, R.O. Ritchie, On the growth of small fatigue cracks in γ-based titanium aluminides, Scripta Materialia 37/5 (1997) 707-712.
  • [5] S.J. Zhu, L.M. Peng, T. Moriya, Y. Mutoh, Effect of stress ratio on fatigue crack growth in Ti-Al intermetallics at room and elevated temperatures, Materials Science Engineering A. 290 (2000) 198-206.
  • [6] J.P. Campbell, R.O. Ritchie, Mixed-mode, high cycle fatigue-crack growth thresholds in Ti-6Al-4V. I. A comparison of large and short-crack behaviour, Engineering of Fracture Mechanics 67 (2000) 209-227.
  • [7] R. Gnanamoorthy, Y. Mutoh, Y. Mizuhara, Fatigue crack growth behaviour of equiaxed, duplex and lamellar microstructure γ base titanium aluminides, Intermetallics 4 (1996) 525-532.
  • [8] C. Bathias, C.P. Paris, Gigacycle Fatigue in Mechanical Practice, Marcel Dekker Inc. 2004; ISBN:0-8247-2313-9; DK3165.
  • [9] E. Bayraktar, C. Bathias, H. Xue, H. Tao, On the Giga Cycle Fatigue Behaviour of two-phase (α2 + γ) Ti-Al Alloy, International Journal of Fatigue 26/2 (2004) 1263-1275.
  • [10] H. Xue, E. Bayraktar, C. Bathias, Effect of ultrasonic fatigue specimen geometry on its strain field and heat response, (Proceedings of the 11th International Scientific Conference on the "Contemporary Achievements in Mechanics, Manufacturing and Materials Science" CAM3S’2005, Gliwice-Zakopane, 2005, 1049-1055.
  • [11] B. Skrotzki, M. Ünal, G. Eggeler, On the role of mechanical twinning in creep of a near-γ Ti-Al-alloy with duplex microstructure, Scripta Materialia 39/8 (1998) 1023-1029.
  • [12] W. Schillinger, B. Lorenzen, A. Bartels, Anisotropic mechanical behaviour of textured γ-Ti-Al caused by the directionality of twinning, Materials Science Engineering A 329-331 (2002) 644-648.
  • [13] W.Z. Chen, X.P.K. Song, W. Qian, H.C. Gu, The lamellar microstructure and fracture behaviour of γ-based Ti-Al alloy produced by centrifugal spray deposition, Materials Science Engineering A 247/1-2 (1998) 126-134.
  • [14] M.A. Morris, Deformation mechanism in fine-grained Ti-Al alloys, Materials Science Engineering A224 (1997) 12-20.
  • [15] S.A. Satyam, K. Singh, R.K. Ray, S. Bhargava, Textural changes during thermomechanical processing of Ti-24Al-11Nb alloy, Scripta Materialia 35/7-1 (1996) 897-902.
  • [16] G. Jago, Relations entre paramètres microstructuraux et mécanismes d'endommagement des alliages de titane α+β forge. Application à l'alliage de titane Ti6246 en fatigue vibratoire à 20kHz. PhD Thesis, ITMA/CNAM, 1996.
  • [17] Z.D. Sun, Q.Y. Wang, C. Bathias, Experimental investigation on freeting fatigue of high strength steel at ultrasonic frequency. FATIGUE'99 Proceeding of the 7th International Fatigue Congress. Beijing, China, 1999, 1365-1370.
  • [18] C. Kanchanomai, Y. Miyashita, Y. Mutoh, S.L. Mannan, Influence of frequency on low cycle fatigue behavior of Pb-free solder 96.5Sn-3.5Ag, Materials Science and Engineering A345 (2003) 90-98.
  • [19] X.Q. Shi, H.L.J. Pang, W. Zhou, Z.P. Wang, Low cycle fatigue analysis of temperature and frequency effects in eutectic solder alloy, International Journal of Fatigue 22 (2000) 217-228.
  • [20] H. Xue, Explanation of Gigacycle Fatigue of Materials in Tension, Bending and Torsion Loading, PhD Thesis, ITMA/CNAM, 2005.
  • [21] X. Kong, K. Saanouni, C. Bathias, On the fatigue at very frequency, part 1: Theoretical and variation formulation, Journal of Engineering Materials and Technology 113 (1991) 205-209.
  • [22] X. Kong, Theoretical and numerical study of ultrasonic fatigue, PhD Thesis, UTC (1988).
  • [23] S. Purushothaman, High power ultrasonic fatigue. Proc.UI-1973, 244.
  • [24] H.R. Mayer, D.M. Tan, S.E. Stanzl-Tschegg, FEM modelling of stress intensity factors during fatigue crack growth at ultrasonic frequencies Engineering of Fracture Mechics 45 (1993) 487-495.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0020-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.