PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-parameter analysis and modelling of engineering surface texture

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Owing to the complexity of machined surface profiles and the contemporary demands for functional characterization, multi-parameter analysis of roughness is recommended by international surface methodology standards, as well as by recent research studies. This article is aimed at presenting a retrospect of works reported by the author on aspects of machined surfaces along with modelling of various texture parameters. Design/methodology/approach: Multi-parameter surface analyses according to the international standards ISO 13565-2: 1997, ISO 12085: 1996 and ISO 13565-2:1996, and with the use of non-standardized parameters as well, are performed on turned and EDM' ed surfaces of different metallic materials over a wide range of machining conditions in order to study: conventional and functional parameter characterization, texture variability, anisotropy and the impact of machining factors on texture parameters. The ultimate goal will be a contribution to surface typology and proposals for selecting representative subsets of parameters in each case considered. Findings: The correlation of each parameter selected is examined with the machining conditions; single and multi-statistical regression models with varying correlation coefficients are developed. New indices to evaluate surface texture anisotropy are proved to be successful. New typology maps for surface control are developed and reduction of roughness parameters in appropriate subsets is achieved. Research limitations/implications: A systematic study of the variation of the parameters selected is conducted regarding three international standards and some "non-common" parameters. Practical implications: Industrial control will benefit by the formulated parameter models, which possess very high coefficients of correlation and a minimum number of representative texture parameters. Originality/value: An integrated view of surfaces obtained by machining processes with quite different physical characteristics and chip formation mechanisms is achieved in the present surface typology oriented study.
Rocznik
Strony
91--100
Opis fizyczny
Bibliogr. 45 poz., fot., rys., tab.
Twórcy
  • Department of Mechanical and Industrial Engineering, University of Thessaly, 383 34 Volos, Greece, gpetrop@mie.uth.gr
Bibliografia
  • [1] D.J. Whitehouse, Handbook of surface metrology, Institute of Physics publishing for Rank Taylor Hobson Co, Bristol, 1996.
  • [2] J.R. Lin, Steady state performance of finite hydrodynamic journal bearing with three dimensional irregularities, Journal of Tribology 112 (1990) 497-505.
  • [3] C. Pandazaras, G. Petropoulos, A computational study of hydrodynamically lubricated convex and concave journal bearings, Proceedings Institution of Mechanical Engineers, Journal of Engineering Tribology 215 J 5 (2001) 425-429.
  • [4] B. Nowicki, Multiparameter representation of surface roughness, Wear 102 (1985) 161-176.
  • [5] D.J. Whitehouse, P. Vanherck, W. De Bruin. C.A van Luttervelt, Assessment of surface typology analysis techniques in turning, Annals of the CIRP 23/2 (1974) 265-282.
  • [6] K.M. Tsai, P.J Wang, Semi-empirical models surface finish on electrical discharge machining, International Journal of Machine Tools & Manufacture 41/10 (2001) 1455-1477.
  • [7] R.M. Sundaram, B.K. Lambert, Surface variability of AlSi 4140 steel in fine turning using carbide tools, International Journal of Production Research 17 (1979) 249-258.
  • [8] Y. Sahin, A. Riza Motorcu, Surface roughness model for machining mild steel with coated carbide tool, Materials and Design 26 (2005) 321-326.
  • [9] J.P. Davim, A note on the determination of optimal cutting conditions for surface finish obtained in turning using design of experiments, Journal of Materials Processing Technology 116 (2001) 305-308.
  • [10] ISO 4287: (1997) Geometrical Product Specifications (GPS), Surface texture: Profile Method - Terms, definitions and surface texture parameters.
  • [11] ISO 12085: 1996 Surface roughness and waviness- Motif method.
  • [12] ISO 13565-2:1996; Geometrical Product Specifications (GPS) - Surface texture: Profile method; Surfaces having stratified functional properties -Part 2: Height Characterization using the linear material ratio curve.
  • [13] S. Ganti, B. Bhushan, Generalized fractal analysis and its applications to engineering surfaces, Wear 180 (1995) 17-34.
  • [14] E.M. Rubio, A.M. Camacho, J.M. Sanchez-Sola, M. Marcos, Surface roughness of AA7050 alloy turned bars, Journal of Materials Processing Technology 162-163 (2005) 682-689.
  • [15] M.A. Dabnun, M.S.J. Hashmi, M.A. El-Baradie, Surface roughness prediction model by design of experiments for turning machinable glass-ceramic (Macor), Journal of Materials Processing Technology 164-165 (2005) 1289-1293.
  • [16] W. Grzesik, J. Rech, T. Wanat, Surface integrity of hardened steel parts in hybrid machining operations, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 367-370.
  • [17] G. Petropoulos, C. Pandazaras, I. Stamos, Developing predictive models between selected texture parameters of turned surfaces, Journal of the Balkan Tribological Association 5/3 (1999) 156-170.
  • [18] G. Petropoulos, C. Pandazaras, N. Vaxevanidis, I. Ntziantzias, A. Korlos, Selecting subsets of mutually unrelated ISO 4287 parameters in turning operations, International Journal of Computational Materials Science and Surface Engineering (2007) in press.
  • [19] G. Petropoulos, N.M. Vaxevanidis, C.N. Pandazaras, Modelling of surface finish in electro-discharge machining based upon statistical multi-parameter analysis, Journal of Materials Processing Technology 155-156 (2004) 1247-1251.
  • [20] G.P. Petropoulos, N.M. Vaxevanidis, A. Iakovou, K. David, Multi-Parameter Modeling of Surface Texture in EDMachining using the Design of Experiments Methodology, Materials Science Forum 526 (2006) 157-162.
  • [21] G.P. Petropoulos, N.M. Vaxevanidis, A. Koutsomichalis, A. Iakovou, A topographic description of the bearing properties of electro-discharge machined surfaces, Proceedings of the 2nd International Conference on Manufacturing Engineering ICMEN 2005, Kassandra-Chalkidiki, 2005, 159-166.
  • [22] N.M. Vaxevanidis, P. Psylaki, G.P. Petropoulos, N. Hassiotis, Surface integrity and microstructural phenomena of Ck 60 steel due to Electro-Discharge Machining, Steels and Materials for Power Plants, Munich, 1999, 240-247.
  • [23] G. Petropoulos, A. Marinkovic, N. Vodolazskaya, A. Korlos, I. Ntziantzias: Another Approach of Surface Textures in Turning using Motif and "Rk" Parameters, Journal of the Balkan Tribological Association 12,/1 2006 7-15.
  • [24] G. Petropoulos, N. Vaxevanidis, I. Ntziantzias, A combined analysis of surface roughness obtained by EDM according to two ISO standards, Proceedings of the 13th International Conference on Nonconventional Technologies ICNcT'2007, Iasi, 2007.
  • [25] A. Majumdar, B. Bhushan, Role of fractal geometry in roughness characterization and contact mechanics of surfaces, Journal of Tribology 112 (1990) 205-216.
  • [26] J.J. Wu, Characterization of fractal surfaces, Wear 239/1 (2000) 36-47.
  • [27] G. Galante, A. Lombardo, M. Piacentini, Fractal dimension, a useful tool to describe the microgeometry of machined surfaces, International Journal of Machine Tools and Manufacture 33/4 (1993) 525-530.
  • [28] G. Petropoulos, W. Bouzid, C. Pandazaras, D. Dramalis, Fractal geometry of metal surfaces obtained by turning, Materials Technology 21/3 (2006) 163-169.
  • [29] J.C. Russ, Fractal dimension measurement of engineering model for wear prediction, Wear 170 (1993) 1-14.
  • [30] J.C. Russ, Fractal Surfaces, Plenum Press, NewYork 1994.
  • [31] L. He, J.Zhou, The fractal character of processed metal surfaces, Wear 208 (1997) 17-24.
  • [32] G. Petropoulos, N.M. Vaxevanidis, C. Pandazaras, A. Antoniadis, Multi-parameter identification and control of turned surface textures, International Journal of Advanced Manufacturing Engineering 29 (2006) 118-128.
  • [33] G. Petropoulos., N.M. Vaxevanidis, C. Pandazaras, A. Antoniadis, Control of representative turned surface textures, Wear 257 (2004) 1270-1274.
  • [34] G.P. Petropoulos, A.A. Torrance, C.N. Pandazaras, Abbot curve characteristics of turned surfaces, International Journal of Machine Tools & Manufacture 43 (2003) 237-243.
  • [35] D.J. Whitehouse, Beta functions for surface typologie, Annals of the CIRP 27/1 1978 491-495.
  • [36] T.S.R Murthy et al, Different functions and computations for surface topography, Proceedings of the International Conference "Metrology and Properties of Engineering Surfaces", Leicester, 1982, 1-10.
  • [37] G. Petropoulos, H. Karachaliou, Testing the Homogeneity of the Roughness of Surfaces Generated by Face Turning Operations, Journal Tribology in Industry 19/3 (1997) 107-112.
  • [38] G.P. Petropoulos, C.N. Pandazaras, I. Stamos, Studying of the main variability aspects of surface texture of steel in face milling, Proceedings of the Institution of Mechanical Engineers Journal of Engineering Tribology 217 (2003) 175-179.
  • [39] B.D. Boudreau, J. Raja, Analysis of lay characteristics of three-dimensional surface maps, International Journal of Machine Tools and Manufacture 32 (1992) 171-177.
  • [40] A.W. Bush, R.D. Gibson, G.P. Keogh, Strongly anisotropic rough surfaces, Journal of Lubrication Technology 101 (1979) 15-20.
  • [41] S. Dizdar, Wear transition of a lubricated sliding steel contact as a function of surface texture anisotropy and formation of boundary layers, Wear 237 (2000) 205-210.
  • [42] C. Pandazaras, G. Petropoulos, Surface Anisotropy for Monitoring the Wear of I.C.E Cylinders, Tribotest Journal 11 (2004) 29-41.
  • [43] T.R. Thomas, B.G. Rosen, N. Amini, Fractal characterization of the anisotropy of rough surfaces, Wear 232 (1999) 41-50.
  • [44] G. Petropoulos, C. Pandazaras, I. Stamos, On the Interdependence of Surface Waviness and Roughness Parameters in Longitudinal Turning, Proceedings of the 2nd World Tribology Congress, Vienna, 2001.
  • [45] G. Petropoulos, P. Davim, F. Mata, C. Pandazaras, New Considerations of Evaluating the Anisotropy of Machined Surfaces, Journal of the Balkan Tribological Association 12/1 (2006) 1-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0020-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.