PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurement of residual stress in plasma-sprayed TBC with a gradient of porosity and chemical composition

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the research was identification of the residual stress in the top coat of different type of thermal barrier coating with gradient of chemical composition and gradient of porosity. Design/methodology/approach: The APS technique was used to deposition of gradient coating. As a bond coat the NiCrAlY overlay coating was applied. Top-coat consist in the case of gradient of porosity - YSZ with different thickness and porosity and in the case of chemical composition gradient YSZ with AMDRY 365-2 powder. The research allowed the identification of qualitative and quantitative phase constitution of top coat and residual stress measurement by sin square Psi method form surface of coatings. Findings: It was found that the dominant phase in all the top coats was tetragonal zirconia with minor addition of monoclinic type of ZrO2 and in the case of residual stress the tensile conditions was observed in the case of gradient porosity and compressive stresses in the case of chemical gradient. Research limitations/implications: Characterization of stress level in gradient TBC's give possibility description of degradation mechanism of barrier coating. Practical implications: The results obtained allow the determination of the degree of life-time lost of the TBC system used as protection for creep resistant alloys. Originality/value: The results obtained are valuable contribution to the development of new type of TBC. They enable the identification of the degradation mechanisms in YSZ / MCrAlY / substrate system.
Rocznik
Strony
31--34
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
autor
autor
Bibliografia
  • [1] F. Cernusci, P. Bianchi, M. Leoni, P. Scardi, Thermal Diffusivity/Microstructure Relationship in Y-PSZ Thermal Barrier Coatings, Journal of Thermal Spray Technology 8/1 (1999) 102-109.
  • [2] J.T. De Masi-Marcin, D.K. Gupta, Protective coatings in the gas turbine engine, Surface and Coating Technology 68/69 (1994) 1-9.
  • [3] J. Wigren, L. Pejryd, Thermal barrier coatings-why, how, where and where to, thermal spray: meeting the challenges of the 21st century, Proceedings of the 15th International Thermal Spray Conference, ASM International, 1998,1531-1542.
  • [4] K.A. Khor, S. Jana, Pulse laser processing of plasma sprayed thermal barrier coating, Journal of Materials Processing Technology 66 (1996) 4-8.
  • [5] B. Siebert, C. Funke, R. Vaben, D. Stover, Changes in porosity and Young's Modulus due to sintering of plasma sprayed thermal barrier coatings, Journal of Materials Processing Technology 92-93 (1999) 217-223.
  • [6] M. Konter, M. Thumann, Materials and manufacturing of advanced industrial gas turbine components, Journal of Materials Processing Technology 92-117 (2001) 386-390.
  • [7] J. Kamalua, P. Byrdb, A. Pitman, Variable angle laser drilling of thermal barrier coated nimonic, Journal of Materials Processing Technology 122 (2002) 355-362.
  • [8] V. Teixeira, M. Andritschky, W. Fischer, H.P. Buchkremer, D. Stover, Analysis of residual stresses in thermal barrier coatings, Journal of Materials Processing Technology 92-93 (1999) 209-216.
  • [9] J.F.Li, H.L. Liao, C.X. Ding, C. Coddet, Optimizing the plasma spray process parameters of yttria stabilized zirconia coatings using a uniform design of experiments, Journal o Materials Processing Technology 160 (2005) 34-42.
  • [10] A.K. Ray, Characterization of bond coat in a thermal barrier coated superalloy used in combustor liners of aero engines, Materials Characterization 57 (2006) 199-209.
  • [11] W.A. Nelson, R.M. Orenstein, TBC experience in land-based gas turbines, Journal of Thermal Spray Technology 6 (1997) 176-180.
  • [12] D. Stover, C. Funke, Directions of the development of thermal barrier coatings in energy applications, Journal of Materials Processing Technology 92-93 (1999) 195-202.
  • [13] S.Q. Nusier, G.M. Newaz, Growth of interfacial cracks in a TBC/superalloy system due to oxide volume induced internal pressure and thermal loading, International Journal of Solids and Structures 37 (2000) 2151-2166.
  • [14] A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H.Meier F.S. Pettit, Mechanisms controlling the durability of thermal barrier coatings, Progress in Materials Science 46 (2001) 505-53.
  • [15] M. Martena, D. Botto, P. Fino, S. Sabbadini, M.M. Gola. C. Badini, Modelling of TBC system failure: Stress distribution as a function of TGO thickness and thermal expansion mismatch, Engineering Failure Analysis 13 (2006) 409-426.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0019-0079
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.