PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of ageing on structure and mechanical properties of WE54 alloy

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: WE54 magnesium alloy offers attractive properties for aerospace and automotive industries. It reaches high specific strength, creep resistance and corrosion resistance up to a temperature of 250 degrees centigrade. The alloy contains 5%wt.Y, 1.7%wt.Nd and 0.55%wt.Zr. The strength of this alloy is achieved essentially via precipitation strengthening. Depending on the ageing temperature and time, the precipitation sequence in WE alloys has been reported to involve formation of phases designated beta", beta' and beta. The aim of the research was to determine the effect of ageing parameters on the microstructure and mechanical properties of WE54 magnesium alloy. Design/methodology/approach: Solution treatment was performed at 525 degrees centigrade/8h with water cooling. Ageing treatments were performed at 250 degrees centigrade/4-96h in air. The microstructure was characterized using Transmission Electron Microscope (TEM). The examination of the mechanical properties was conducted on an MTS-810 machine at two temperatures: ambient and 200 degrees centigrade. Hardness measurements by Vickers method were performed on a ZHV50 hardness tester. Findings: The microstructure of the WE54 alloy in as-cast condition consists of alpha-Mg phase matrix with some fine-dispersion precipitates of Mg2Y and Mg24Y5 intermetallic phases inside and on grain boundaries. After solution treatment followed by water-cooling, the intermetallic phases dissolve in the matrix. The ageing treatment caused precipitation of beta", beta' and beta 1 intermetallic phases. The best mechanical properties (Rm=333MPa, R0,2=257MPa, A5=6,3%) has a alloy with beta' intermetallic phase after ageing at 250 degrees centigrade/16h. Research limitations/implications: The future research will contain corrosion and creep tests of WE5 magnesium alloy. Practical implications: The established heat treatment parameters can be useful for preparing heat treatment technology of WE54 casts. Originality/value: The relationship between the ageing parameters, microstructure and mechanical properties in WE54 magnesium alloy was specified.
Rocznik
Strony
27--30
Opis fizyczny
Bibliogr. 15 poz., fot., rys., tab.
Twórcy
autor
  • Department of Materials Science, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland, andrzej.kielbus@polsl.pl
Bibliografia
  • [1] H. Friedrich, S. Schumann, Research for a "new age of magnesium" in the automotive industry, Journal of Materials Processing Technology 117/3 (2001) 276-281.
  • [2] B. Mordike, Creep-resistant magnesium alloys, Materials Science and Engineering A324 (2002) 103-112.
  • [3] N. Zeumer, A. Honsel, Magnesium alloys in new aeronautic equipment, Magnesium alloys and their applications Wolfsburg Germany (1998) 125-132.
  • [4] B. Mordike, Development of highly creep resistant magnesium alloys, Journal of Materials Processing Technology 117/3 (2001) 391-394.
  • [5] S.Kim, H. Yoo, Y. Kim, Research strategy for AM60 magnesium steering wheel, Magnesium Technology 2002.
  • [6] Z. Xiaoquin, W. Quodong, L. Yizhen, Z. Yanping, D. Wenjiang, Z. Yunhu, Influence of beryllium and rare earth additions on ignition-proof magnesium alloys, Journal of Material Processing Technology 112 (2001) 17-23.
  • [7] J.G. Wang, L.M. Hsiung, T.G. Nieh, M. Mabuchi, Creep of a heat treated Mg-4Y-3RE alloy, Materials Science and Engineering A315 (2001) 81-88.
  • [8] J.F. Nie, B.C. Muddle, Precipitation in magnesium alloy WE54 during isothermal ageing at 250ºC, Scripta Materialia 40/10 (1999) 1089-1094.
  • [9] B. Smola, I. Stulikova, J. Pelcova, B. Mordike, Structure and morphology of effective obstacles in high performance Mg-Rare Earth Base Alloys, Proceedings of the 6th International Conference Magnesium Alloys and Their Applications, Wolfsburg (2003) 43-48.
  • [10] D. Li, Q. Wang, W. Ding, Characterization of phases in Mg-4Y-4Sm-0.5Zr alloy processed by heat treatment, Materials Science and Engineering A428 (2006) 295-300.
  • [11] L.L. Rokhlin, T.V. Dobatkina, I.E. Tarytina, V.N. Timofeev, E.E. Balakhchi: Peculiarities of the phase relations in Mg-rich alloys of the Mg-Nd-Y system, Journal of Alloys and Compounds 367 (2004) 17-19.
  • [12] M. Socjusz-Podosek, L. Lityńska, Effect of yttrium on structure and mechanical properties of Mg alloys, Materials Chemistry and Physics 80 (2003) 472-475.
  • [13] J. Nie, X. Xiao, C. Luo, B. Muddle, Characterization of precipitate phases in magnesium alloys using electron microdiffraction, Micron 32 (2001) 857-863.
  • [14] A. Kiełbus, Heat treatment of the WE54 magnesium alloy, Proceedings of the 15th International Federation for Heat Treatment and Surface Engineering and Surface Modification Technologies Congress, Vienna (2006) 310-316.
  • [15] T. Rzychoń, J.Michalska, A. Kiełbus, Effect of heat treatment on corrosion resistance of WE54 alloy, Journal of Achievements in Materials and Manufacturing Engineering 20 (2006) 191-194.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0019-0078
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.