PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication of bulk metallic glasses by centrifugal casting method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
12th International Scientific Conference CAM3S'2006, 27-30th November 2006, Gliwice-Zakopane
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the present work is characterization of the centrifugal casting method, apparatus and produced amorphous materials, which are also known as bulk metallic glasses. Design/methodology/approach: The studied centrifugal casting system consists of two main parts: casting apparatus and injection system of molten alloy. The described centrifugal casting method was presented by preparing a casting apparatus "CentriCast - 5". The apparatus includes a cylindrical copper mold, which is rotated by a motor. The transmission allows to changing the speed of rotating mold. Findings: Bulk metallic glasses are a novel class of engineering materials, which exhibit excelent mechanical, thermal, magnetic and corrosion properties. Centrifugal casting is a useful method to produce bulk amorphous materials in form of rings, tubes or cylindrical parts. Presented centrifugal casting method and casting apparatus has been prepared to fabricate the samples of bulk metallic glass in form of rings with an outer diameter of 25 mm and controlled thicknesses by changing the weight of the molten alloy. Research limitations/implications: Studied centrifugal casting method and casting apparatus has been prepared to fabricate the samples of bulk metallic glass. For future research a characterization of microstructure and properties of prepared material will be performed. Practical implications: The centrifugal casting is a useful process to produce bulk amorphous materials in form of rings, tubes or graded amorphous matrix composites. It seems to be a very simple method, which allows to obtain BMG materials. Originality/value: The centrifugal casting method allows to produce bulk amorphous rings with thickness above 1-mm.
Rocznik
Strony
487--490
Opis fizyczny
Bibliogr. 20 poz., fot., rys., tab.
Twórcy
autor
  • Division of Nanocrystalline and Functional Materials and Sustainable Pro-ecological Technologies, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18 a, 44-100 Gliwice, Poland, rafal.babilas@polsl.pl
Bibliografia
  • [1] R. Nowosielski, J.J. Wysłocki, I. Wnuk, P. Sakiewicz, P. Gramatyka, Ferromagnetic properties of polymer nanocomposites containing Fe78Si9B13 powder particles, Journal of Materials Processing Technology 162-163 (2005) 242-247.
  • [2] R. Nowosielski, J.J. Wysłocki, I. Wnuk, P. Gramatyka, Nanocrystalline soft magnetic composite cores, Journal of Materials Processing Technology 175 (2006) 324-329.
  • [3] R. Nowosielski, L.A. Dobrzański, P. Gramatyka, S. Griner, J. Konieczny, Magnetic properties of high-energy milled Fe78Si13B9 nanocrystalline powders and powder-based nanocomposites, Journal of Materials Processing Technology 157-158 (2004) 755-760.
  • [4] S. Lesz, R. Szewczyk, D. Szewieczek, A. Bieńkowski, The structure and magnetoelastic properties of the Fe-based amorphous alloy with Hf addition, Journal of Materials Processing Technology 157-158 (2004) 743-748.
  • [5] Y. Kawamura, Liquid phase and supercooled liquid phase welding of bulk metallic glasses, Materials Science and Engineering A 375-377 (2004) 112-119.
  • [6] M. Bakkal, A.J. Shih, R.O. Scattergood, Chip formation, cutting forces, and tool wear in turning of Zr-based bulk metallic glass, International Journal of Machine Tools & Manufacture 44 (2004) 915-925.
  • [7] M. Heilmaier, Deformation behaviour Zr-based metallic glasses, Journal of Materials Processing Technology 117 (2001) 374-380.
  • [8] Y. Saotome, S. Miwa, T. Zhang, The micro-formability of Zr-based amorphous alloys in the supercooled liquid state and their application to micro-dies, Journal of Materials Processing Technology 113 (2001) 64-69.
  • [9] C.H. Wong, Friction welding of Zr41Ti14Cu12,5Ni10Be22,5 bulk metallic glass, Scripta Materialia 49 (2003) 393-397.
  • [10] T. Shoji, Y. Kawamura, Y. Ohno, Friction welding of bulk metallic glasses to different ones, Materials Science and Engineering A 375-377 (2004) 394-398.
  • [11] S. Li, D.Q. Zhao, M.X. Pan, W.H. Wang, A bulk metallic glass based on heavy rare earth gadolinium, Journal of Non-Crystalline Solids 351 (2005) 2568-2571.
  • [12] W.H. Wang, Z. Bian, P. Wena, Y. Zhanga, M.X. Pana, Role of addition in formation and properties of Zr-based bulk metallic glasses, Intermetallics 10 (2002) 1249-1257.
  • [13] J. Zhang, Y.H. Wei, K.Q. Qiu, H.F. Zhang, M.X. Quan, Z.Q. Hu, Crystallization kinetics and pressure effect on crystallization of Zr55Al10Ni5Cu30 bulk metallic glass, Materials Science and Engineering A357 (2003) 386-391.
  • [14] J.F. Loeffler, Bulk metallic glasses, Intermetallics 11 (2003), 529-540.
  • [15] J. Basu, S. Ranganathan, Bulk metallic glasses: A new class of engineering materials, Sadhana 28 (2003) 783-798.
  • [16] A. Inoue, Bulk amorphous and nanocrystalline alloys with high functional properties, Materials Science and Engineering A304-306 (2001) 1-10.
  • [17] W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Materials Science and Engineering R 44 (2004) 45-89.
  • [18] M. Telford, The case for bulk metallic glass, Materialstoday, March 2004 (2004) 36-43.
  • [19] Q.S. Zhang, D.Y. Guo, A.M. Wang, H.F. Zhang, B.Z. Ding, Z.Q. Hu, Preparation of bulk Zr55Al10Ni5Cu30 metallic glass ring by centrifugal casting method, Intermetallics 10 (2002) 1197-1201.
  • [20] J.W. Gao, C.Y. Wang, Modeling the solidification of functionally graded materials by centrifugal casting, Materials Science and Engineering A292 (2000) 207-215.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0019-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.