PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and theoretical evaluation of solidification cracking in weld metal

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
12th International Scientific Conference CAM3S'2006, 27-30th November 2006, Gliwice-Zakopane
Języki publikacji
EN
Abstrakty
EN
Purpose: The main objective of this work is to compare the compatibility and reliability of the theoretical and experimental methodologies in the evaluation of the solidification cracking susceptibility of austenitic stainless steel weld metal, using three different electrodes. Design/methodology/approach: The cracking susceptibility of welds is described here through an experimental procedure using the transvarestraint test, and a theoretical procedure developed as a function of the chemical composition and microstructure of the material. The theoretical procedure requires knowledge of the weld metal chemical composition and microstructure, which was taken from the literature. Findings: Results obtained by means of tablets, parameter evaluation and fitting, micrographs and macrographs indicate that the experimental and theoretical methodologies are consistent with one another, and are both reliable, regardless of the welding process employed. Practical implications: The results of our theoretical analysis were in complete agreement with those obtained from the transvarestraint test, thus indicating that, if correctly applied, either of these methods can be used to determine the susceptibility of austenitic stainless steels to form solidification cracks. The choice between the experimental or the theoretical method should depend only on the availability and ease of application for each specific case. Originality/value: It is possible to make a theoretical assessment of the solidification cracking susceptibility of a given steel as a function of the: chemical composition, Creq/Nieq, ferrite number FN, microstructure, percentage of (S+P), and percentage of ferrite. Another way to measure the susceptibility of steel to solidification cracking is through experimental tests. The originality of this study is the numerical comparison made between the results provided by two different methods: the theoretical assessment and the practical technique, using the transvarestraint test.
Rocznik
Strony
407--410
Opis fizyczny
Bibliogr. 15 poz., tab.
Twórcy
  • Mechanical Engineering Department, State University of Campinas, Cep 13083-970, Campinas, SP, Brazil, roseana@fem.unicamp.br
Bibliografia
  • [1] A. Brooks, A.W. Thompson, Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds, International Materials Reviews, v.36, no.1 (1991) 16-44.
  • [2] S. Kou, Welding metallurgy, 1th. ed. New York: John Wiley & Sons, 1987. Cap. 11, Solidification Cracking of the Fusion Zone, 211 - 236.
  • [3] V. Shankar, R.W. Messler Jr., Segregation of phosphorus and sulfur in heat-affected zone hot cracking of type 308 stainless steel. Welding Journal, (2002) 78-84.
  • [4] Y. Cui, C.D. Lundin and H. Vasudevan, Mechanical behavior of austenitic stainless steel weld metals with microfissures, Journal of Materials Processing Теchnology v.171 (2006) 150-155.
  • [5] E. Folkhard, Welding Metallurgy of Stainless Steels, New York: Springer-Verlag, 1988. Cap.5, Hot cracking resistance during the welding of austenitic stainless steels, 144-171.
  • [6] M.E. Khallaf, M.A Ibrahim, N.A. El-Mahallawy, and M.A. Taha, On crack susceptibility in the submerged arc welding of medium-carbon steel plates, Journal of Materials Processing Technology, v.68. (1997) 43-49.
  • [7] G. Lothongkum, E. Viyanit, and P. Bhandhubanyong; Study on effects of pulsed TIG welding parameters on delta-ferrite content, shape factor and bead quality in orbital welding of AISI 316L stainless steel plate, Journal of Materials Processing Technology, v.110 (2001) 233-238.
  • [8] K. Wilken and H. Kleistner, The classification and evaluation of hot cracking test for weldements, Welding in the world, v.28, no. 7/8 (1990) 127-143.
  • [9] V. Shankar et al. "Criteria for hot cracking evaluation in austenitic stainless steel welds using longitudinal varestraint and transvarestraint tests", Science and Technology of Welding and Joining Vol.5 (2000) 91-97.
  • [10] E.M. Braga, R.E. Trevisan, Study of solidification crack using the transvarestraint test, In: COBEM, 2001, Uberlândia, UFU, 2001. (In Portuguese).
  • [11] M N. Murugan and R.S. Parmar, Effects of MIG process parameters on the geometry of the bead in the automatic surfacing of stainless steel, Journal of Materials Processing Technology v.4 (1994) 381-398.
  • [12] A. Wahab, M.J. Painter and M. H. Davies, The prediction of the temperature distribution and weld pool geometry in the gas metal arc welding process, Journal of Materials Processing Technology v.7 (1998) 233-239.
  • [13] D.C. Montgomery, Porbabilidad Y Estatistica Aplicadas a la Ingineria, Mexico, Mexico: McGraw-Hill Interamericana Editores, 1996.
  • [14] AMERICAN WELDING SOCIETY. ANSI/AWS A5.22-95: Specification for stainless steel electrodes for flux cored arc welding and stainless steel flux cored rods for das tungsten arc welding. AWS, Florida, USA, 2000.
  • [15] Linnert, E. George, Welding Metallurgy, 4.ed., Florida: American Welding Society - AWS, 1996, Cap. 6 - Welding methods and processes, 503-651 and Cap. 8 – Fluxes, slags and gases for shielding, 707-785.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0018-0091
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.