PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ chropowatości powierzchni i twardości podłoża na pomiar twardości cienkich warstw.

Autorzy
Identyfikatory
Warianty tytułu
EN
The effect of surface roughness and substrate hardness on thin coating hardness measurements.
Języki publikacji
PL
Abstrakty
PL
Twardość powierzchni jest jednym z fundamentalnych parametrów zarówno w mechanice kontaktu, jak i w teorii tarcia, a także podstawowym parametrem w prognozowaniu trwałości eksploatacyjnej elementów węzłów kinematycznych maszyn. Pomimo coraz powszechniejszego stosowania powłok na powierzchniach roboczych elementów par tribologicznych wiarygodność znanych metod wyznaczania ich twardości jest nadal dyskusyjna. W artykule przedstawiono metodę określania twardości cienkich warstw polegającą na wykonaniu serii pomiarów twardości powierzchni przy wzrastających głębokościach penetracji, a następnie analitycznym wyznaczeniu twardości samej warstwy powierzchniowej. Eksperymentalną weryfikację zaproponowanej metody przeprowadzono na próbkach: TiN na stali narzędziowej oraz warstwy diamentopodobnej (DLC-diamond like carbon) na krzemie. Pomiary mikrotwardości wykonano przy użyciu Micro-Combi-Testera firmy CSEM.
EN
Thin coatings are increasingly being applied in many advanced products. Examples of application are protective overcoats of recording films in optical storage disks, thin layers in multilayer capacitors. In mechanical engineering the coatings are used in several different applications, e.g. in cutting tools, dies and other tribological application, as protective films and corrosion resistant coatings. The estimation of the mechanical properties of thin films on substrates is still an area of considerable discussion. The hardness is one of the key mechanical properties of a number of coated systems. It has been measured using a variety of experimental techniques ranging from traditional macro-Vickers indentation to ultra-low-load depth-sensing nanoindentation. However, since the contact response of coated system will vary with contact severity and scale, it is important to develop methods of hardness measurement, which allow performance over a suitably wide range of scales to be successfully predicted. The analysis of indentation results is very ambiguous because of complex indentation stress field beneath the indenter, particularly in the case of multilayer coating systems and gradient materials. There is general agreement, that at contact scales of dimensions less than the coating thickness (t) the coating dominates the system response, what it means that to obtain intrinsic hardness value for thin-film, the indentation depth (h) should be ten times smaller than the film thickness. At contact scales which are very large compared with t, the substrate dominates and with a mixed response occuring at intermediate scales. However, besides of the essential upper bound of indentation depth it exists a lower bound, which arises from surface roughness. The micro- and nanoindentation techniques are very sensitive to the surface roughness. In general, it is recommended the indentation depth larger than fifth times of RMS. The surface roughness of a number of coated systems is high in relation to the thickness of coating, what is critical in selection of the appropriate indentation depth. The purpose of this paper is a method for evaluation of intrinsic coating hardness in the cases, when is not possible to fulfil a condition, that the indentation depth should be ten times smaller than the film thickness, as it is for thin coatings with relative roughness. In the case of hard, thin and rough coating on softer substrate the method consists of analysis of the force-displacement data, obtained from series of tests, with wide range of the different relative indentation depth (0,05
Rocznik
Strony
17--30
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • Akademia Górniczo-Hutnicza, Wydział Inżynierii Mechanicznej i Robotyki, 30-065 Kraków, al. Mickiewicza 30
autor
  • Akademia Górniczo-Hutnicza, Wydział Inżynierii Mechanicznej i Robotyki, 30-065 Kraków, al. Mickiewicza 30
Bibliografia
  • [1] Greenwood J.A., Williamson J.B.P.: Contact of Nominally Flat Surfaces, Proc. Roy. Soc., vol. A 295, (1966), p. 300-319.
  • [2] Archard J.F.: Contact and Rubbing of Flat Surfaces. J. Appl. Phys., vol. 24, 1953, p. 981-988.
  • [3] Korsunsky A.M., McGurk M.R., Bull S.J., Page T.F.: On the hardness of coated systems. Surface and Coatings Technology, vol. 99 (1998), p. 171-183.
  • [4] Jonsson B., Hogmark S.: Hardness measurements of thin films. Thin Solid Films, vol. 114 (1984), p. 257-269.
  • [5] Bull S., Rickerby D.: New developments in the modelling of the hardness and scratch adhesion of thin films. Surface and Coatings Technology, vol. 42 (1990), p. 149-164.
  • [6] Ahn J-H., Kwon D.: Micromechanical estimation of composite hardness using nanoindentation technique for thin-film coated systems. Materials Science and Engineering A, vol. 285 (2000) , p. 172-178.
  • [7] Tuck J.R., Korsunsky A.M., Bull S.J., Davidson R.I.: On the application of the work-of-indentation approach to depth-sensing indentation experiments in coated systems. Surface and Coatings Technology, vol. 137 (2001), p. 217-224.
  • [8] Tuck J.R., Korsunsky A.M., Bhat D.G., Bull S.J.: Indentation hardness evaluation of cathodic arc deposited thin hard coatings. Surface and Coatings Technology, vol. 139 (2001), p. 63-74.
  • [9] Malzebender J., den Toonder J.M.J., Balkenende A.R., de With G.: Measuring mechanical properties of coatings: a methodology applied to nano-particle-filled sol-gel coatings on glass. Materials Science and Engineering R, vol. 36(2002), pp. 47-103.
  • [10] Ichimura H., Rodriguez F.M., Rodrigo A.: The composite and film hardness of TiN coatings prepared by cathodic arc evaporation. Surface and Coatings Technology, vol. 127 (2000), pp. 138-143.
  • [11] Ichimura H., Ishii Y.: Mechanical properties of arc-evaporated CrN coatings. Part II: intrinsic film hardness and composite hardness. Surface and Coatings Technology, vol. 145 (2001) , pp. 94-100.
  • [12] Puchi-Cabrera E.S.: A new model for the computation of the composite hardness of coated systems. Surface and Coatings Technology, vol. 160 (2002), p. 177-186.
  • [13] Saha R., Nix W.D.: Effect of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Materialia, vol. 50 (2002), pp. 23-38.
  • [14] Musil J., Kunc F., Zeman H., Polakova H.: Relationship between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings. Surface and Coatings Technology, vol. 154 (2002), pp. 304—313.
  • [15] Oliver W.C., Pharr G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, vol. 7 (1992), pp. 1564-1583.
  • [16] Sneddon I.N.: The transmission of force between two half planes. Journal of Elasticity, vol. 2 (1972), pp. 283-295.
  • [17] Norma ISO 14577 Test Method for indentation testing.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0010-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.