PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanotribologia - spojrzenie w przyszłość.

Autorzy
Identyfikatory
Warianty tytułu
EN
Nanotribology - a look into future.
Języki publikacji
PL
Abstrakty
PL
W opracowaniu przedstawiono aktualny stan wiedzy i nakreślono kierunki rozwoju nanotribologii. W zakres badań tego obszaru tribologii wchodzą badania podstawowe prowadzone w skali atomowej dotyczące zjawisk w obszarze kontaktu dwóch powierzchni trących, badania zachowania się ultracienkich (o nanometrowych grubościach) warstw, struktur trących MEMS (Micro Electro Mechanical Systems) i NEMS (Nano Electro Mechanical Systems), budowy urządzeń magnetycznego i igłowego zapisu informacji o dużej i bardzo dużej gęstości zapisu, procesy nanoimprintingu i inne z obszaru dynamicznie rozwijającej się nanotechniki. Zdefiniowano problemy badawcze, których rozwiązanie jest istotne dla postępu w zakresie szeroko rozumianej nanotechniki/nanotechnologii.
EN
Nanotribology is an exciting area of tribology science. It is rather short history of this important branch of tribology. The starting point was the invention of Atomic Force Microscopy (AFM) which was very sensitive instrument to investigate friction on atomic scale. The wide area of AFMs family enables nowadays to perform complete interdisciplinary research on atomic and nanometer scale to understand tribological, mechanical and other physical and chemical phenomena occuring on sliding interface. The adhesion, friction, wear and mechanical studies became common in many tribological labs in the world. The understanding of surface phenomena is important to investigate the tribological behaviour of micro- and nano-tribosystems. The use of such powerful instrument like AFM is together with other devices like Scanning Tunneling Microscope (STM) and Surface Apparatus (SFA) enables to study topography, adhesion, friction, wear and other properties. The rheological phenomena on nanoscale in particular in lubricating nanosystems are of great interest of tribologists to understand in particular transition from static to kinetic friction on atomic and nanometer scale. Many applications of nanotribology in magnetic recording technology. Micro Electro Mechanical Systems (MEMS) and Nano Electro Mechanical Systems (NEMS) technology and in nanoimprinting technology are now of subject of many projects in the world. Future trends in nanotribology relate mainly to understand the process of energy and matter dissipation on atomic scale. The final aim of nanotribological research is to construct frictionless and wear less tribosystems in nanotechnology. Nanoimprinting technology except MEMS/NEMS technology are in particular very interesting area of the nanotribological studies. Very important is to understand friction in biological systems. The studies of flagellum motor or/and ATF - phase in biological molecular systems can lead us towards the biomitecis and adaptronics i.e. construction of ideal nanosystems. The relationships between friction and wear on atomic scale is of great importance to be understood. The possible way is molecular dynamics modeling by increase of the number of atoms involved in the process. The time scale in such modeling should be as much as possible wide. The application of effective supercomputers in such study is necessary. Tribochemistry and termodynamics are important approaches to be taken into consideration in the studies of atomic and nanometer scale tribosystems. The rapid progress in nanotribology is necessary for the development of nanoscience and nanotechnology. The nanotechnology enables to construct ideal systems on any scale. Probably the way proposed by K.E. Drexler by the use of mechanosynthesis and single atoms as "bricks" in construction of technical systems is the best way which is opening before us.
Słowa kluczowe
Rocznik
Strony
35--45
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
  • Politechnika Warszawska, Instytut Mikromechaniki i Fotoniki, ul. św. Andrzeja Boboli 8, 02-525 Warszawa, tel. (0-22) 66-08-540, z.rymuza@mchtr.pw.edu.pl
Bibliografia
  • [1] Bhushan B. (ed), Springer Handbook of Nanotechnology, Springer Verlag, Berlin 2004.
  • [2] Bhushan В., Introduction to Tribology, J.Wiley, New York 2002.
  • [3] Bhushan B.(ed), Handbook of Micro/Nanotribology, 2nd ed., CRC Press, Boca Raton 1998.
  • [4] Rymuza Z., Mikrotribologia i nanotribologia, w: Tribologia i tribotechnika (ed.M.Szczerek i M. Wiśniewski), Wydawnictwo Instytutu Technologii Eksploatacji, Radom 2000, s. 234-246.
  • [5] Bhushan B., Principles and Applications of Tribology, J.Wiley, New York, 1999.
  • [6] Kaneko R., Microtribological applications of probe microscopy, Tribology International 28 (1995) 195-202.
  • [7] Hirano M., Study on Atomistic Friction, PhD thesis, University of Tokyo, 1998.
  • [8] Bhushan B., Fuchs H., Hosaka S. (ed), Applied Scanning Probe Methods, Springer Verlag, Berlin 2003.
  • [9] Morita S., Wiesendanger R., Meyer E., Noncontact Atomic Force Microscopy, Springer Verlag, Berlin 2002.
  • [10] Meyer E., Ovemey R.M., Dransfeld K., Gyalog T., Nanoscience, Friction and Rheology on the Nanometer Scale, World Scientific, Singapore 1998 .
  • [11] Bhushan B. (ed), Tribology Issues and Opportunities in MEMS, KLuwer, Dordrecht 1998.
  • [12] Fischer-Cripps A., Nanoindentation, Springer Verlag, Berlin 2002.
  • [13] Israelashvili J.N., Intermolecular and Surface Forces, 2n ed., Academic Press, London 1991.
  • [14] Bhushan B. (ed), Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales, Kluwer, Dordrecht 2001.
  • [15] Li M., Chen L., Zhang W., S.Y.Chou,, Pattern transfer fidelity of nanoimprint lithography on six-inch wafers, Nanotechnology, 14 (2003) 33-36.
  • [16] Bhushan B., Modem Tribology Handbook, CRC Press, Boca Raton 2001.
  • [17] Fujita H. (ed), Micromachines as Tools for Nanotechnology, Springer Verlag, Berlin 2003.
  • [18] Gnecco E., Bennewitz R., Meyer E., Abrasive wear on the atomic scale, Physical Review Letters 88 (2002)215501.
  • [19] Barabasi L., Stanley J., Fractal Concepts in Surface Growth, Cambrige University Press, Cambrige 1995.
  • [20] Janocha H. (ed), Adaptronics and Smart Structures, Springer Verlag, Berlin 1999.
  • [21] L'Hocine Y. (ed), Ligaments and Ligamentoplasties, Springer Verlag, Berlin 1997.
  • [22] Scherge M., Gorb S., Biological Micro- and Nanotribology, Springer Verlag, Berlin 2000.
  • [23] Fujimasa L, Micromachines; A New Era in Mechanical Engineering, Oxford University Press, Oxford 1996.
  • [24] Jones C.J., Aizawa S., The bacterial flagellum and flagellar motor; structure, assembly, and functions, Advances in Microbiological Physiology 32 (1991) 109-172.
  • [25] Bald D., Noji H., Yoshida M., Hirono-Hara Y., Hisabori T., Redox regulation of the rotation of F1-ATP synthase, Journal of Biological Chemistry, 276 (2001) Oct, 39505 - 39507.
  • [26] Drexler K.E., Nanosystems: Molecular Machinery, Manufacturing and Computation, J.Wiley, New York, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0009-0042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.