PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative studies of surface composition in polycrystalline and nanocrystalline LaNi4.2Al0.8 alloys.

Identyfikatory
Warianty tytułu
PL
Badania porównawcze składu powierzchni w polikrystalicznych i monokrystalicznych stopach LaNi4,2Al0,8.
Konferencja
XVIth Physical Metallurgy and Materials Science Conference on Advanced Materials and Technologies AMT'2001, Gdańsk-Jurata, 16-20 September 2001
Języki publikacji
PL
Abstrakty
EN
The surface chemical compositions of nanocrystalline LaNi4.2Al0.8 alloys was studied by Auger electron spectroscopy and compared to that of a polycrystalline sample. Results showed that the surface segregation of La atoms in the mechanically alloyed nanocrystalline LaNi4.2Al0.8 alloy is stronger compared to that of polycrystalline powders from arc-melted ingots. On the other hand, the level of oxygen impurities trapped in the mechanically alloyed powder during the processing is practically the same as in the arc-melted ingots. Small amounts of Fe impurities, which strongly segregate to the surface, could be responsible for the observed a little lower hydrogen storage capacity of the MA nanocrystalline LaNi4.2Al0.8 alloy compared to that of polycrystalline samples.
Rocznik
Strony
854--856
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
  • Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland
autor
  • Institute of Materials Science and Engineering, Poznań University of Technology, Poznań, Poland
autor
  • Institute of Materials Science and Engineering, Poznań University of Technology, Poznań, Poland
autor
  • Institute of Materials Science and Engineering, Poznań University of Technology, Poznań, Poland
  • Polish Academy of Sciences, Institute of Molecular Physics, Poznań, Poland
Bibliografia
  • [1] Willems J.J.G.: Philips J, Res. 36 (1984) 1.
  • [2] Sakai T., Matsuoka M., Iwakura C.: in K.A. Gschneider Jr., L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earth, Vol. 21, Elsevier Science, 1995, p. 135.
  • [3] Nakamura Y., Nakamura H., Fujitani S., Yonezu I.: J. Alloys Comp. 210 (1994) 299
  • [4] Jurczyk M., Rajewski W., Wójcik G., Majchrzycki W.: J. Alloys Comp. 285 (1999) 250.
  • [5] Benjamin J.S.: Sci. Am. 40 (1976) 234.
  • [6] Jurczyk M., Rajewski W., Majchrzycki W., Wójcik G.: J. Alloys Comp- 274. (1998) 299.
  • [7] Smardz L., Kobler U., Zinn W.: J. Appl. Phys, 71 (1992) 5199.
  • [8] Siegmann H.C., Schlapbach L., Brundle C.R.: Phys. Rev. Lett. 40 (1978) 972.
  • [9] Zaluski L., Zaluska A., Ström-Olsen J.O.: J. Alloys Corp. 253-254 (1997) 70.
  • [10] Jurczyk M., Majchrzycki W.: J. Alloys Comp. 311 (2000) 311.
  • [11] Jurczyk M., Rajewski W., Majchrzycki, W., Wójcik G.: J. Alloys Comp. 290 (1999) 264.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0003-0048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.