PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the microstructure of EB-PVD thermal barrier coatings on the thermal conductivity and the methods to reduce the thermal conductivity

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, the selection of the materials for usage aim is getting important because of the new high technologic developments. Especially for the parts operating at high temperatures, the materials which have low thermal conductivity and high mechanical resistance are preferred. Thermal Barrier Coatings (TBCs) are used in aerospace, diesel engine and power plant technologies due to porous structures and low thermal conductivity. Generally these coatings are applied by two methods, Electron Beam-Plasma Vapor Deposition (EB-PVD) and Atmospheric Plasma Spray (APS). EBPVD method provides the advantages of superior strain and thermal shock tolerant due to its columnar microsturucture. However this columnar structure increases the thermal conductivity of the coating, so this is an undesired property with regard to heat transfer. In this study, the effect of microstructure of the coating to the thermal conductivity of EB-PVD TBCs and the methods to reduce the thermal conductivity of these coatings have been investigated.
Rocznik
Strony
7--15
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
autor
  • Eskişehir Osmangazi University, Meşelik Kampüsü 26480 Eskişehir, Turkey, okutlu@ogu.edu.tr
Bibliografia
  • [1] S. Alpèrine, M. Derrien, Y. Jaslier, R. Mèvrel, Thermal barrier coatings: the thermal conductivity challenge, Proceedings of the 85th Meeting of the AGARD Structures and Materials Panel, Aalborg, 1997, AGARD Report 823.
  • [2] O. Altun, Y.E. Boke, The Effect of Pore Shape to the Effective Thermal Conductivity of Thermal Barrier Coatings, Proceedings of the ASME Heat Transfer Conference, Jacksonville, 2008.
  • [3] N.P. Anderson, K.D. Sheffler, Development of strain tolerant thermal barrier coating systems, Task I-III, National Aeronautics and Space Administration, NASA CR-168251, 1983.
  • [4] P. Bengtsson, C. Persson, Modelled and measured residual stresses in plasma sprayed thermal barrier coatings, Surface and Coatings Technology 92 (1997) 78-86.
  • [5] R. Berman, Thermal conduction in solids, Oxford, Clarendon, 1976.
  • [6] S. Bose, J. De Masi-Marcin, Thermal barrier coating experience in gas turbine engines at pratt and whitney in thermal barrier coatings Workshop, NASA-CP-3312, NASA-Lewis Research Centre, Cleveland, 1995, 63-77.
  • [7] T.W. Clyne, I.O. Golosnoy, J.C. Tan, A.E. Markari, Porous materials for thermal management under extreme conditions, Philosophical Transactions of the Royal Society A 364 (2006) 125-146.
  • [8] D.S. Duvall, Processing technology for advanced metallic and ceramic turbine airfoil coating, Proceedings of the 2nd Conference “Advanced Materilas for Alternative -Fuel-Capable Heat Engines” EPRIRO-2369-SR, Electric Power Research Institute, 1981, 6, 102-117.
  • [9] D.S. Duvall, D.L. Ruckler, ASME Paper 82-GT-327, 1982.
  • [10] L.M. Earley, The relationship between microstructure and thermal condcutivity of thermal barrier coatings deposited by thermal evaporation, MSc thesis, University of Manchester Institute of Science and Technology (UMIST), Manchester, 1992.
  • [11] J.W. Fairbanks, R.J. Hecht, The durability and performance of coatings in gas turbine and diesel engines, Materials Science and Engineering 88 (1987) 321-330.
  • [12] I.O. Golosnoy, S.A. Tsipas, T.W. Clyne, An analytical model for simulation of heat flow in Plasma-sprayed thermal barrier coatings, Journal of Thermal Spray Technology 14 (2005) 205-214.
  • [13] P.G. Klemens, R.K. Williams, Thermal conductivity of metals and alloys, International Materials Reviews 31 (1986) 197-215.
  • [14] H. Lammermann, G. Kienel, PVD coatings for aircraft turbine blades, Advanced Materials and Processes 140/6 (1991) 18-23.
  • [15] M. Levit, I. Grimber, B.Z. Weiss, Residual stresses in ceramic plasma-sprayed thermal barrier coatings: measurement and calculation, Materials Science and Engineering A 206 (1996) 30-38.
  • [16] L.B. Loeb, The kinetic theory of gases, McGraw-Hill Book Company, New York, 1934.
  • [17] T.J. Lu, C.G. Levi, H.N.G. Wadley, A.G. Evans, Distributed Porosity as a Control Parameter for Oxide Thermal Barriers Made by Physical Vapor Deposition, Journal of the American Ceramic Society 84 (2001) 2937-2946.
  • [18] S.M. Meier, D.K. Gupta, The evolution of Thermal barrier coatings in gas turbine engine applications, Journal of Engineering for Gas Turbines and Power 116 (1994) 250-257.
  • [19] S.M. Meier, D.K. Gupta, K.D. Sheffler, Ceramic TBCs for Commercial Gas Turbine Engines, JoM, 1992.
  • [20] S.M. Meier, D.M. Nissley, K.D. Sheffler, Status of ceramic thermal barrier coatings – gas turbine applications and life prediction, Proceedings of the Coatings for Advanced Heat Engines Workshop, U.S. Department of Energy, CONF-9008151, 1990, II. 57-65.
  • [21] R.A. Miller, Current status of thermal barrier coatings-An overview, Surface Coatings Technology 30/1 (1987)1-11.
  • [22] R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, Journal of Thermal Spray Technology 6 (1997) 35-42.
  • [23] J.R. Nicholls, K.J. Lawson, A. Johnstone, D.S. Rickerby, Methods to reduce the thermal conductivity of EB-PVD TBCs, Surface and Coatings Technology 151-152 (2002) 383-391.
  • [24] J.R. Nicholls, K.J. Lawson, D.S. Rickerby, P. Morrel, Advanced processing of TBC’s for reduced thermal conductivity, NATO Workshop on Thermal Barrier Coatings, Aalborg, AGARD-R-823, 6,1998.
  • [25] N.P. Padture, M. Gell, E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications, Science 296/5566 (2002) 280-284.
  • [26] J.E. Parrott, A.D. Stuckes, Thermal conductivity in solids, Pion Limited, 1975.
  • [27] M. Peters, C. Leyens, U. Schults, W.A. Kayser, EB-PVD thermal barrier coatings for aeroengines and gas turbines, Advanced Engineering Materials 3/4 (2001) 193-204.
  • [28] R.B. Peterson, Direct simulation of phonon mediated heat transfer in an Debye crystal, Journal of Heat Transfer 116/4 (1994) 815.
  • [29] H.-J. Rätzer-Scheibe, U. Schulz, T. Krell, The effect of coating thikness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings, Surface and Coatings Technology 200 (2006) 5636-5644.
  • [30] U. Schultz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne, J.-M. Dorvaux, M. Poulain, R. Mévrel, M. Caliez, Some Recent Trends In Research and Technology of Advanced Thermal Barrier Coatings Aerospace Science and Technology 7 (2003) 73-80.
  • [31] R. Siegel, J.R. Howell, Thermal radiation heat transfer, McGraw-Hill, New York, 1972.
  • [32] C.T. Sims, Non-Metallic Materials for Gas Turbine Engines-Are They Real, Advanced Materials and Processes 139 (1991) 32-39. Effect of the microstructure of EB-PVD thermal barrier coatings... 15
  • [33] T.E. Strangman, Development and performance of physical vapour deposition thermal barrier coating systems, Proceedings of the Workshop “Coatings for Advanced Heat Engines”, Castine, 1987.
  • [34] L.E. Summer, D.L. Ruckle, Development of improved durability plasma sprayed ceramics coatings for gas turbine engines, American Institute of Aeronautics and Astronautics (1980) 80-1193.
  • [35] O. Unal, T.E. Mitchell, A.H. Heuer, Microstructures of Y2O3-Stabilized ZrO2 Electron Beam-Physical Vapor Deposition Coatings on Ni-Base Superalloys, Journal of the American Ceramic Society 77 (1994) 984.
  • [36] D.E. Wolfea, J. Singha, R.A. Miller, J.I. Eldridgeb, D-M. Zhu, Tailored microstructure of EB-PVD 8YSZ thermal barrier coatings with low thermal conductivity and high thermal reflectivity for turbine applications, Surface and Coatings Technology 190 (2005) 132-149.
  • [37] X. Zheng, D.G. Cahil, J-C. Zhao, Thermal conductivity imaging of thermal barrier coatings Advanced Engineering Materials 7 (2005) 622-629.
  • [38] D. Zhu, R.A. Miller, B.A. Nagaraj, R.W. Bruce, Thermal conductivity of EB-PVD thermal barrier coatings evaluated by a steady-stete laser heat flux technique, Surface Coatings Technology 138 (2001) 1-8
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS4-0021-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.