PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Petri net-based knowledge acquisition framework for CAPP

Autorzy
Identyfikatory
Warianty tytułu
PL
Sieć Petriego jako platforma akwizycji wiedzy dla potrzeb CAPP
Języki publikacji
EN
Abstrakty
EN
A tendency has existed over the years for Computer Aided Process Planning (CAPP) system methodologies to develop towards expert system applications. Knowledge-based expert system platforms include a knowledge acquisition module. This paper presents the binary Petri net as a unified framework for acquisition and representation of knowledge in the scope of machining operations planning. An illustrative example of the process of hole-making was used to demonstrate the graphical user interface.
PL
Zmiany w metodologii systemów komputerowego wspomagania projektowania procesów ukierunkowane są od kilku lat na zastosowanie systemów ekspertowych. Platformy systemów ekspertowych, których podstawą jest wiedza uwzględniają moduł akwizycji wiedzy. W artykule przedstawiono binarną sieć Petriego jako zunifikowaną platformę dla akwizycji i reprezentacji wiedzy projektowej z zakresu projektowania zabiegów obróbki. Dla zilustrowania wizualnego interfejsu użytkownika podano przykład z zakresu obróbki otworów.
Rocznik
Strony
21--38
Opis fizyczny
Bibliogr. 72 poz., rys., tabl.
Twórcy
autor
Bibliografia
  • [1] H. C. ZHANG, L. ALTING: Computerized manufacturing process planning systems. Chapman and Hall, London 1994.
  • [2] X. ZHOU, Y. QIU, G. HUA, H. WANG, X. RUAN: A feasible approach to the integration of CAD and CAPP. Computer-Aided Design, 39(2007), 324-338.
  • [3] I. KURIC, S. LEGUTKO: Chosen aspects of modern CAPP systems. Computational Methods in Science and Technology, 7(2001)2, 65-74.
  • [4] R. KNOSALA: Zastosowanie metod sztucznej inteligencji w inżynierii produkcji. WNT, Warszawa 2002.
  • [5] U. BOSE: A cooperative problem solving framework for computer-aided process planning. Proc. 32nd Hawaii Inter. Conf. on System Sciences, Maui 1999.
  • [6] K. WANG: An integrated intelligent process planning system for machining. J. Intelligent Manufacturing, 9(1998), 503-514.
  • [7] D. N. SORMAZ, B. KHOSHNEVIS: Process planning knowledge representation using an object-oriented data model. J. CIM, 10(2000)1, 92-104.
  • [8] J. POKOJSKI: Systemy doradcze w projektowaniu maszyn. WNT, Warszawa 2005.
  • [9] J. DUDA, J. POBOŻNIAK: Hierarchiczny model wiedzy technologicznej. Mat. konf. „Podstawy Projektowania Procesów i Systemów Produkcyjnych”, Politechnika Krakowska, Monografia 150(1993), 51-61.
  • [10] D. KIRITSIS: A review of knowledge-based expert systems for process planning. Methods and problems. J. Advanced Manufacturing Technology, 10(1995), 240-262.
  • [11] Y. HAO: Research on auto-reasoning process planning using a knowledge based semantic net. Knowledge-Based Systems, 19(2006), 755-764.
  • [12] S. HALBE, P. NIRGUDKAR, K. UMAPATHY: Computer-aided process planning (CAPP) system with alternative process plans. Project for the Course IE550 – Manufacturing Systems, 2000.
  • [13] C. GRABOWIK, K. KALINOWSKI, Z. MONICA: Integration of the CAD/CAPP/PPC systems. J. Materials Processing Tech., 164(205), 1358-1368.
  • [14] J. HABEL: Obiektowo-hierarchiczna reprezentacja procesu technologicznego dla potrzeb systemu CAPP. Mat. konf. „Metody i Środki Projektowania Wspomagane Komputerowo”, Kazimierz Dolny 2005, 133-140.
  • [15] A. CHEP, L. TRICARICO, P. BOURDET, L. GALANTUCCIO: Design of object-oriented database for the definition of machining operation sequences of 3D workpieces. Computer Industrial Engineering, 34(1998)2, 257-279.
  • [16] S. H. HUANG, H. C. ZHANG: Artificial neural networks in manufacturing: concepts, applications and perspectives. IEEE Transactions on Components, Packing and Manufacturing Technology, 17(1994)2, 212-228.
  • [17] M. FURUKAWA, Y. KAKAZU, N. OKINO: Control of design process with Petri net for CAD-knowledge representation based object/operation dualism. J. of the Japan Society of Precision Engineering, 5(1989)55, 877-882.
  • [18] G. DEVEDŽIĆ: A knowledge based system for drilling and milling cutting tools selection. Gépgyártástechnológia, 11(1992).
  • [19] J. DUDA, J. HABEL, J. POBOŻNIAK: Semi-generative CAPP system. WEB Journal: CA Systems in Production Process Planning, 2002.
  • [20] J. A. CECILE, K. SRIHARI, C. R. EMERSON.: A review of Petri net application in process planning. J. Advanced Manufacturing Technology, 7(1992), 168-177.
  • [21] B. M. COLOSIMO, Q. SEMERARO, T. TOLIO: Rule based system for non linear process plan generation. Studies in Informatics Control, 9(200)2, 133-143.
  • [22] D. KIRITSIS, P. XIROUCHAKIS, C. GUNTHER: Petri net representation for the process specification language – Part 1: Manufacture process planning. Proc. Conf. Inter. “Workshop on Intelligent Manufacturing Systems IMS-EUROPE”, Lausanne 1998.
  • [23] K. H. LEE, M. Y. JUNG: Flexible process sequencing using Petri net theory. Computers and Industrial Engineering, 28(1995) 2, 279-290.
  • [24] I. J. RUDAS, L. HORVÁT: Modelling of manufacturing processes using a Petri-net representation. Engineering Applications of A. I., 10(1997)3, 243-255.
  • [25] D. N. SORMAZ, S. THIRUPPALLI, J. ARUMUGAM: Evaluation of manufacturing feature precedence constraints using Petri nets. Proc. 11th Industrial Engineering Research Conf., Orlando 2002.
  • [26] K. SRIHARI, C. R. EMERSON: Petri nets in dynamic process planning. Proc. 12th Annual Conf. on Computers and Industrial Engineering, Orlando 1990, 447-451.
  • [27] R. STRYCZEK: Wizualny interfejs użytkownik-baza wiedzy. Mat. konf. „Inżynieria Wiedzy i Systemy Ekspertowe”, Wrocław, 2(2006), 93-102.
  • [28] R. R. WU, L. MA, J. MATHEW, G.H. DUAN: Optimal operation planning using fuzzy Petri nets with resource constraints. J. CIM, 15(2002)1, 28-36.
  • [29] X. F. ZHA, S. Y. E. LIM, W. F. LU.: A knowledge intensive multi-agent system for cooperative/collaborative assembly modeling and process planning. J. Integrated Design and Process Science, 2003, 99-122.
  • [30] Z. KULPA, M. SOBOLEWSKI: Knowledge-directed graphical and natural language, interface with knowledge-based concurrent engineering environment. Report CERC-Tr-Tm-92-001, West Virginia University, Morgatown 1992.
  • [31] G. BRITTON, G. THIMM, T.S. BENG, F. JIANG: A graph representation scheme for process planning of machined parts. J. Advanced Manufacturing Technology, 20(2002), 429-438.
  • [32] K. CHENG, J. POPOV: Internet-enabled modeling of extended manufacturing enterprises using process-based technique. J. Advanced Manufacturing Technology, 23(2004), 148-153.
  • [33] J. DETAND, J. K. KRUTH, H. THIELEMANS: COMPLAN Process planning approaches. www.mech.kuleuven.ac.be/pma/project/complan/appcpp.html.
  • [34] B. KHOSHNEVIS, W. TAN: Automated process planning for hole-making, American Society of Mechanical Engineers, Manufacturing Review, 8(1995)2.
  • [35] K. P. NEUENDORF, D. KIRITSIS: Operation sequencing for optimal process planning using Petri net based methods. Informatik-Bericht, 85(1997)4.
  • [36] D. N. SORMAZ, B. KHOSHNEVIS: Intelligent process planning implemented as an integrated module of CIM. Proc. ASME Design Engineering Technical Conf., Sacramento 1997.
  • [37] D. N. SORMAZ, B. KHOSNEVIS: Generation of alternative process plans in integrated manufacturing systems. J. Intel. Manufacturing, 14(2003), 509-526.
  • [38] M. K. TIWARI, K. RAMA KOTAIAH, S. BHATNAGAR: A case-based computer-aided process-planning system for machining prismatic components. J. Advanced Manufacturing Technology, 17(2001), 400-411.
  • [39] D. H. LEE, D. KIRITSIS, P. XIROUCHAKIS: Operation sequencing in nonlinear planning: local search heuristic. Studies in Informatics and Control J., 11(2002)1.
  • [40] M. SADAIAH, D. R. YADAV, P. V. MOHANRAM, P. RADHAKRISHAN: A generative computer-aided process planning system for prismatic components. J. Advanced Manufacturing Technology, 20(2002), 709-719.
  • [41] S. S. PARK, G. MUKUNDAN, S. GU, G.J . OLLING: In-process model generation for the process planning of a prismatic part. J. Advanced Manufacturing Systems, 2(2003)2, 147-162.
  • [42] T. N. WONG, C. F. CHAN, H. C. W. LAU: Machining process sequencing with fuzzy expert system and genetic algorithms. Engineering with Computers, 19(2003), 191-202.
  • [43] A. WADATKAR: Process selection for hole operations using rule based approach. Thesis, Ohio University, Athens 2004.
  • [44] H. YONGTAO, M. JINGYING: A knowledge-based auto-reasoning methodology in hole-machining process planning. Computers in Industry, 57(2006), 297-304.
  • [45] S. YAO, X. HAN, Y. YANG, Y. RONG, S. H. HUANG, D. W. YEN., G. ZHANG: Computer-aided manufacturing planning for mass customization: part 1, framework. J. Manufacturing Technology, 32(2007), 194-217.
  • [46] S. CHAMPATI, W. F. LU, A. C. LIN: Automated operation sequencing in intelligent process planning: A case-based reasoning approach. J. Advanced Manufacturing Technology, 12(1996), 21-36.
  • [47] J. VÁNCZA: Planning in manufacturing domains controlled by case-reasoning. Proc. AAAI-98 Workshop, Madison 1998, 161-165.
  • [48] C. F. YUEN, S. Y. WONG, P. K. VENUVINOD: Development of a generic computer-aided process planning support system. J. Materials Processing Technology, 139(2003), 394-401.
  • [49] F. SCHMALHOFER, R. BERGMANN, O. KUHN, G. SCHMIDT: Using integrated knowledge acquisition to prepare sophisticated expert plans for their re-use in novel situations. Research Report PP-92-25, German Research Center for AI, Kaiserslautern 1992.
  • [50] X. SHI, J. CHEN, H. YANG, Y. PENG, X. RUAN: A novel approach to extract knowledge from simulation results. J. Advanced Manufacturing Technology, 20(2002), 390-396.
  • [51] H. XING, S.H. HUANG, J. SHI: Rapid development of knowledge-based systems via integrated knowledge acquisition. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 17(2003), 221-234.
  • [52] J. R. QUINLAN: Semi-autonomus acqisition of pattern-based knowledge. Introductory Readings in Expert Systems, 12(1982).
  • [53] R. S. MICHALSKI, E. L. CHILAUSKY: Knowledge acquisition by encoding expert rules versus computer induction from examples. J. Man-Machines Studies, 12(1980), 63-87.
  • [54] I. ROJEK-MIKOŁAJCZAK, Z. WEISS: Sztuczna inteligencja w procesach technologicznych. CADCAM Forum, 10(2001), 40-46.
  • [55] H. C. ZHANG, S. H. HUANG: Applications of neural networks in manufacturing: A state-of-the-art survey. J. Production Research, 33(1995)3, 705-728.
  • [56] G. M. KNAPP, H. P. WANG: Acquiring, storing and utilizing process planning knowledge using neural networks. J. Intel. Manufacturing, 3(1992)5, 333-344.
  • [57] C. L. P. CHEN: Setup generation and feature sequencing using unsupervised learning algorithm. Proc. Design and Manufacturing Systems Conf., Dearborn 1993, 981-986.
  • [58] J. MEI, H. C. ZHANG, W. OLDHAM: A neural network approach for datum selection in CAPP. Computers in Industry, 27(1995), 63-87.
  • [59] S. H. HUANG, X. HAO, M. BENJAMIN: Automated knowledge acquisition for design and manufacturing: The case of micromachined Atomizer. J. Intelligent Manufacturing, 12(2001), 377-391.
  • [60] S. H. HUANG, H. XING: Extract intelligible and concise fuzzy rules from neural networks. Fuzzy Sets and Systems, 132(2002), 233-243.
  • [61] S. H. HUANG, H. C. ZHANG: Neural-hybrid approach for intelligent manufacturing: A survey. Computer and Industry, 26(1995), 107-126.
  • [62] I. HAM, C. Y. LU: Computer-aided process planning: The present and the future. Annals of the CIRP, 37(1988), 1-11.
  • [63] D. KIRITSIS, M. PORCHET, A. BELHI: A generic Petri net model for dynamic process planning. Proc. ASME Int. Computers and Engineering Conf., Mineapolis 1994, 235-242.
  • [64] J. SZADKOWSKI: Formalny opis struktury procesu technologicznego. Mat. konf. „Podstawy Projektowania Procesów i Systemów Produkcyjnych”, Kraków 1993, 229-236.
  • [65] A. KNUTILLA, T. POLYAK, C. SCHLENOFF, A. TATE, S.CH. CHEAH, S. RAY, ANDERSON R.C.: Process specification language: Analysis of existing representations. NISTIR 6133, National Standards and Tech., Gaithersburg 1998.
  • [66] M. L. GARG, S. I. AHSON, P. V. GUPTA: A fuzzy Petri net for knowledge representation and reasoning. Information Processing Letters, 39(1991), 165-171.
  • [67] A. K. ZAIDI: Validation and verification of decision making rules. Technical Report GMU/C31-155-TH, George Mason University, Fairfax 1994.
  • [68] S. J. H. YANG, W. C. CHU, J. LEE, W.T. HUANG: A fuzzy Petri net mechanism for fuzzy rules reasoning. Proc. 21th Conf. Computer Software and Application, Washington 1997, 438-443.
  • [69] X. LI, W. YU, F. LARA-ROSANO: Dynamic knowledge interface and learning under adaptive fuzzy Petri net framework. IEEE Transactions on Systems Man and Cybernetics, 30(2000)4, 442-450.
  • [70] C. JIANG, Y. ZHENG: Fuzzy reasoning based on Petri nets. Studies in Informatics and Control, 9(2000)3, 195-206.
  • [71] V. HETEM, K. CARR, M. LUCENTI, O. RUIZ, X. ZHU, P.M. FERREIRA, C.Y. LU: Specification for a process planning enabling platform. J. Systems Engineering, 5(1995), 48-59.
  • [72] J. D. SUMMERS, B. BETTIG, J.J. SHAH: The design exemplar: A new data structure for embodiment design automation. J. Mechanical Design, 126(2004), 775-787.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS4-0019-0084
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.