PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

TEM observation of structure in superplastically forged CuZnSn new alloys.

Identyfikatory
Warianty tytułu
Konferencja
5th Polish-Japanese Symposium on Advanced Methods of Materials Characterization, Niedzica, 28.08-2.09.2004
Języki publikacji
EN
Abstrakty
EN
TEM observation was performed to clarify the mechanisms of high speed suerplastic deformation of new commercial alloys base on Cu-40Zn, developed by contolling the microstructure and adding Sn. The new alloys have excellent hot workability, corrosion resistance and also shape memory ability when subjected to heat treatment. As one can conclude from the transmission electron microscopy studies of the initial as quenched structure, the alloys contain alpha, beta and gamma phases. The gamma phase is characterized by a low stacking fault energy and shows many twins, while beta phase transforms after quenching into 9R martensite. The structure of hot deformed samples suggests that grain boundary sliding is an important process in the areas of grain mixture of alpha, beta and gamma phases, however crystallographic slid performed due to dislocations and deformation by twinning may also play an important role in the superplastic forging of these alloys. The gamma phase as a hard phase accumulates plied-up dislocations. The accumulated dislocations will move along the interphase boundary as an avalanche, which is considered to be an important process of superplastic forging. The wavy character of twin interfaces after forging may point to their movement during high temperature deformation.
Słowa kluczowe
EN
TEM   structure   forging   alloy  
PL
TEM   struktura   kucie   stop  
Rocznik
Strony
127--135
Opis fizyczny
Bibliogr. 10 poz., rys.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 30-059 Kraków, ul. Reymonta 25, Poland
autor
  • Dept. of Mechanical Eng., Faculty of Eng., Sojo Univ., 4-22 Ikeda, Kumamoto, 860-0082, Japan
autor
  • Dept. of Mechanical Eng., Faculty of Eng., Sojo Univ., 4-22 Ikeda, Kumamoto, 860-0082, Japan
Bibliografia
  • [1] G.D. Bengough, J. Inst. Metals 7, 123 (1912).
  • [2] V.K. Portnoi, V.S. Levchenko, Nguen Ngok Kuin, Metalloved. Term Obrabot. Met., 11, 11 (1986).
  • [3] D. Padmavardhani, Y.V.R.K. Prasad, Z. Metallkd., 84, 57 (1993).
  • [4] К. Кiгсhberg, Freib. Forschungsh. Metal. Werkstof., B224, 163 (1985).
  • [5] R. Matsubara, N. Ashie, K. Nakamura, S. Miura, Mat. Sc. Forum, 304-306, 753 (1990).
  • [6] H. Honda, R. Matsubara, N. Ashie, K. Nakamura, S. Miura, Mat. Sc. Forum, 327-328, 477 (2000).
  • [7] H. Honda, R. Matsubara, N. Ashie, K. Nаkamura, S. Miura, Mat. Sc. Research Int., Special Tech. Pub., 2, 347 (2001).
  • [8] S. Miura, K. Nаkamura, N. Ashie, R. Matsubara, Y. Azuma, Bull. Japan Soc. Mech. Eng., 105, 613 (2002).
  • [9] К. Shibata, S. Miura, N. Ono, R. Matsubara, N. Ashie, К. Nаkamura, Preprints of 51st Meeting of Soc. Mat. Sc., Japan, (2002) 343-344.
  • [10] S. Miura, N. Ono, К. Nakamura, N. Ashie, R. Matsubara, Proc. of Seminar on Nanotechnology for Fabrication of Hybrid Materials, 4th Japanese-Polish Joint Seminar on Materials Analysis, Japan, (2002) 51-54.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS4-0010-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.