Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Fabrication and Properties of Metallic Nanomaterials, Warsaw, 17-19 June, 2004.
Języki publikacji
Abstrakty
This paper presents 57Fe Moessbauer spectroscopy, electron paramagnetic resonance (EPR), transmission electron microscopy (TEM), X-ray diffraction (XRD), gamma-ray spectroscopy and dielectric permitivity spectroscopy studies of fully metamict gadolinite REE2Fe2+Be2Si2O10 from Ytterby (Sweden). X-ray and electron diffraction patterns of the sample show complete lack of long range order (LRO). 57Fe Moessbauer spectroscopy of the sample revealed only Fe3+ ions definitely located in octahedral coordinations, similar to thye crystalline structure of gadolinite. The EPR resonance spectrum is complete and its features corespond to Gd3+ and Mn2+ centers. The Gd3+ centers show low-symmetry of local crystal field and may be characterized by distribution of spin-Hamiltonian parameters such as: g-factor and fine-structure parameters. The temperature dependence of utensity proves that a fraction of gadolinium ions interact by superexchange type mechanism and reveals that these exchange interactions are of the antiferromagnetic type Mn2+ centers and the character of Mn2+ EPR spectra indicate that this spectra are atributed to isolated manganium ions. The AC conductivity exhibits thermally activated behavior above 420 K whereas the dielectric constant shows a step-like anomaly near 230 K.
Wydawca
Czasopismo
Rocznik
Tom
Strony
561--571
Opis fizyczny
Twórcy
autor
- Faculty of Earth Science, University of Silesia, ul. Będzińska 60, 41-200 Sosnowiec, Poland
autor
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
autor
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Faculty of Earth Science, University of Silesia, ul. Będzińska 60, 41-200 Sosnowiec, Poland
Bibliografia
- [1] R. C. Ewing, R. F. Haaker, Nucl. and Chem. Waste Management, 1, 51 (1980).
- [2] R. C. Ewing, Nucl. Instr. and Meth. in Phys. Res., B91, 22 (1994).
- [3] A. MeIdrum, L. A. Boatner, R. C. Ewing, Phys. Rev., B56, 13805 (1997).
- [4] W. J. Weber, R. C. Ewing, C. R. A. Catlow, T. Diaz de la Rubia, L. W. Hoobs, C. Kinoshita, Hj. Matzke, A. T. Motta, M. Nastasi, E. K. H. Salje, E. R. Vance, S. J. Zinkle, J. Mater. Res., 13, 1434 (1998).
- [5] J. Ito, S. S. Hafner, Am. Mineral, 59, 700 (1974).
- [6] J. Janeczek, R. K. Eby, Phys. Chem. Minerals, 19, 343 (1993).
- [7] R. Miyawaki, I. Nakai, K. A. Nagashima, Am. Mineral., 69, 948 (1984).
- [8] R. L. Romer, S. A. Smeds, Precambrian Res., 67, 141 (1994).
- [9] L. M. Wang, R. K. Eby, J. Janeczek, R. C. Ewing, Nucl. Instr. and Meth. in Phys. Res., B59/60, 395 (1991).
- [10] D. G. Rancourt, J. Y. Ping, Nucl. Instr. Meth. Phys. Res(B)., 58, 85 (1991).
- [11] D. Malczewski, Hyp. Int., 141/142, 337 (2002).
- [12] A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions Oxford 1970.
- [13] J. Kliava, Phys. Stat Sol.,(b) 134, 411 (1986).
- [14] S. K. Misra, Appl. Magn. Reson., 10, 193 (1996).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS4-0010-0036