PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrical discharge assisted mechanical milling in materials processing: formation of nano-structures in carbon and boron.

Autorzy
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Fabrication and Properties of Metallic Nanomaterials, Warsaw, 17-19 June, 2004.
Języki publikacji
EN
Abstrakty
EN
A novel device for ball milling, incorporating high voltage, low current electrical discharge was constructed and its application for material processing investigated. Recent results of investigations involving spark discharge milling of carbon and boron under various atmospheres and electrical conditions are presented and discussed. Samples including activated carbon, graphite, and crystalline boron powder were given electrical discharge milling treatment under Ar and N2 atmospheres. A range of nano-fragments was observed using transmission electron microscopy. Discharge milling of activated carbon in Ar, with small amounts of Fe powder, was found to promote the formation of multi-walled carbon nanotubes, while milling of the same activated carbon in nitrogen lead to the formation of carbon encapsulated iron nanoparticles. Experiment performed on graphite with Fe, discharge milled in Ar revealed the formation of both graphite nanoparticles and rolled-sheet graphite nanostructures. Milling of boron powder under a high voltage discharge was found to lead to the formation of fragmented particles of boron and unusual boron feather-like nanorods.
Rocznik
Strony
333--342
Opis fizyczny
Twórcy
autor
  • Faculty of Engineering, University of Wollongong, Wollongong NSW 2522, Australia
autor
  • Faculty of Engineering, University of Wollongong, Wollongong NSW 2522, Australia
  • Faculty of Engineering, University of Wollongong, Wollongong NSW 2522, Australia
Bibliografia
  • [1] A. Całka, D. Wexler, Nature, 419, 147 2002).
  • [2] A. Całka, D. Wexler, Mater. Sci. Forum, 386-388, 125 (2002).
  • [3] A. Całka, R. A. Varin, D. Wexler, Proc. Int. Symp. on Processing and Fabrication of Advanced Materials-PFAM XI, 2002, Materials Solutions Conference & Exposition, Columbus, OH, October 7-10, (2002) eds. T. S. Srivatsan and R .A. Varin, ASM International, Materials Park, OH (in press).
  • [4] H. Kimura, S. Kabayashi, J. Japan Inst. Metals, 58, 201 (1994).
  • [5] H. Kimura, Nanostructured Materials, 9, 93 (1997).
  • [6] R. S. Mishra, A. K. Mukherjee, Mater. Sci. Eng. A, 287, 178 (2000).
  • [7] S. Iijima, Nature, 354, 56 (1991).
  • [8] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, Nature, 318, 162 (1985).
  • [9] D. Ugarte, Nature, 359, 707 (1992).
  • [10] J. Liu, H. J. Dai, J. H. Hafner, D. T. Colbert, R. E. Smalley, S. J. Tans, Nature, 385, 780 (1997).
  • [11] Y. Saito, T. Matsumoto, Nature, 392, 237 (1998).
  • [12] A. Krishnan, E. Dujardin, M. M. J. Treacy, J. Hugdahl, S. Lynum, T. W. Ebbesen, Nature, 388, 451 (1997).
  • [13] Zhao Tingkai, Liu Yongning, Carbon, 42, 2735 (2004).
  • [14] T. W. Ebbesen, P. M. Ajayan, Nature, 358, 220 (1992).
  • [15] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, Nature, 388, 756 (1997).
  • [16] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, Science, 273, 483 (1996).
  • [17] M. J. Yacaman, M. M. Yoshida, L. Rendon, J. G. Santiesteban, Appl. Phys. Lett., 62, 657 (1993).
  • [18] A. Całka, D. Wexler, Inżynieria Materiałowa, 3, (140), 465 (2004).
  • [19] Yu-Hsiang Wang, Sheng-Cheng Chiu, Kuo-Min Lin, Yuan-Yao Li, Carbon, 42, 2535 (2004).
  • [20] J. Ding, W. F. Miao, P. G. McCormick, R. Street, Appl. Phys. Lett., 67, 3804 (1995).
  • [21] S. Subramoney, Adv. Mater., 10, 1157 (1998).
  • [22] J. H. Scott, S. A. Majetich, Phys. Rev. B, 52, 12564 (1995).
  • [23] A. A. Bogdanov, C. Martin, R. Weissleder, T. J. Brady, Biochim. Biophys. Acta, 1193, 212 (1994).
  • [24] S. Pattser, R. Reszka, S. Wagner, Anti-Cancer Drug Des, 12, 125 (1997).
  • [25] G. A. J. Amaratunga, M. Chhowalla, C. J. Kiely, I. Alexandrou, R. Aharonov, M. Devenish, Nature, 383, 321 (1996).
  • [26] A. Bezryadin, R. M. Westervelt, M. Tinkham, Appl. Phys. Lett., 74, 2699 (1991).
  • [27] J. Yu, E. G. Wang, X. D. Bai, Appl. Phys. Lett., 78, 2226 (2001).
  • [28] Y.P. Sun, J. E. Riggs, K. B. Henbest, R. B. J. Martin, J. Nonlinear Opt. Phys. Mater., 9, 481 (2001).
  • [29] G. Chen, C. Wu, W. Weng, D. Wu, W. Yan, Polymer, 44, 1781 (2003).
  • [30] Y. Wang, X. Duan, Appl. Phys. Lett., 82, 272 (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS4-0010-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.