PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oxidation of Zr-based metallic glasses and nanocrystalline alloys.

Identyfikatory
Warianty tytułu
Konferencja
International Conference on Fabrication and Properties of Metallic Nanomaterials, Warsaw, 17-19 June, 2004.
Języki publikacji
EN
Abstrakty
EN
A number of Zr-alloys are among the most promissing systems for bulk glass formation; in addition, these glasses can be used as precursor material for nanocrystallization. In order to reveal the potential application of these materials their stability against oxidation is of utmost importance. In melt-spun Zr-based metallic glasses a native oxide layer was found to protect against further oxidation of the ribbon. Oxygen diffusion into the Zr-based metallic glasses ahead of the proceeding oxidation from seems to be too slow; any effect of increased oxygen content could be neglected. Oxidation kinetics can be assumed to be controlled by oxygen diffussion through the scale towards the ZrO2/glass interface and can be improved significantly By Be or small additions of the alloying elements. Two modes of oxidation were observed: In Zr69.5Cu12Ni11Al7.5 glasses, for example, growth of continuous scales consisting of modules of tetragonal ZrO2 occur; Cu, Ni and Al form nanocrystals between these modules. Zr-Au or Zr-Pd glasses, on the other hand, exhibit "catastrophic" oxidation even at temperatures far below their glass transition. Fast oxidation can be correlated to the formation of oxide cones with a lamellar structure of monoclinic and tetragonal ZrO2. The structure is assumed to allow very fast diffusion along the interfaces between the lamellar. Whereas nanocrystalization seems to improve the oxidation resistance of many Zr-based metallic glasses, a coarse crystalline structure exhibits fast oxidation along grain boundaries, at least in Zr2Pd. The reason for this behaviour is not understood as yet.
Rocznik
Strony
283--295
Opis fizyczny
Twórcy
autor
  • Dept. Biochem & Chem. Eng., University of Dortmund, D-44231 Dortmund, Germany
autor
  • Dept. Biochem & Chem. Eng., University of Dortmund, D-44231 Dortmund, Germany
  • Dept. Biochem & Chem. Eng., University of Dortmund, D-44231 Dortmund, Germany
Bibliografia
  • [1] W.L. Johnson, Mat. Res. Soc. Symp. Proc. Vol. 554: Bulk Metallic Glasses, eds. W.L. Johnson, A. Inoue, C.T. Liu, MRS Warrendale 1999, p. 311ff.
  • [2] A. Inoue, Acta Mater., 48, 279 (2000).
  • [3] H. Kakiuchi, A. Inoue, M. Onuki, Y. Takano, T. Yamaguchi, JIM, Mater. Trans., 42, 678 (2001).
  • [4] D. Zander, Wasserstoff in metastabilen Zr-Cu-Ni-Al-Legierungen, Ph.D. thesis, Dortmund 2001 (Logos Verlag, Berlin 2001).
  • [5] K. Ashida, Y. Hatano, W. Nishida, K. Watanabe, A. Amano, K. Matsuda, S. Ikeno, J. Nucl. Sci. Tech., 38, 952 (2001).
  • [6] M. Shibata, N. Kawata, T. Masumoto, H. Kimura, Chem. Let., 11, 1605 (1985).
  • [7] A. Yokoyama, H. Komiyama, H. Inoue, T. Masumoto, H. Kimura, J. Non-Cryst. Sol., 61 & 62, 619 (1984).
  • [8] R. Schlögl, G. Loose, M. Wesemann, A. Baiker, J. Catal., 137 139 (1992).
  • [9] D. Zander, L. Lyubenova, R. Janlewing, U. Köster, J. Metastable & Nanocryst. Mater., 15/16, 23 (2003).
  • [10] U. Köster, Triwikantoro, Mat. Sci. Forum, 360-362, 29 (2001).
  • [11] N. Eliaz, D. Eliezer, E. Abramov, D. Zander, U. Köster, J. Alloys Compd., 305, 272 (2000).
  • [12] H.M. Kimura, K. Asami, A. Inoue, T. Masumoto, Corr. Sci., 35, 909 (1993).
  • [13] H. Kimura, A. Inoue, T. Masumoto, S. Itabahi, Sci. Rep. Ritu., A33, 183 (1986).
  • [14] U. Köster, U. Schünemann, Phase Transformations in Rapidly Solidified Alloys, in: Rapidly Solidified Alloys, ed. H.H. Liebermann, Marcel Dekker Inc., New York 1993, p. 303ff.
  • [15] M. Shibata, N. Kawata, T. Masumoto, H.M. Kimura, J. Catalysis, 108, 263 (1987).
  • [16] U. Köster, L. Jastrow, J. Metastable & Nanocryst. Mater., 20/21, 407 (2004).
  • [17] L. Jastrow, U. Köster, M. Meuris, Mater. Sci. Eng., A375-377, 440 (2004).
  • [18] Triwikantoro, Oxidation metallener Gläser auf Zr-Basis, Ph.D. thesis, Dortmund 2001 (Cuvillier Verlag, Göttingen 2001).
  • [19] K. Aoki, T. Masumoto, C. Suryanarayana, J. Mat. Sei., 21, 793 (1986).
  • [20] U. Brossmann, R. Wüschum, U. Södervall, H.-E. Schaefer, J. Appl. Phys., 85, 7646 (1999).
  • [21] V.N. Konev, A.L. Nadolskii, L.A. Minyacheva, Oxidation of Metals, 47, 237 (1997).
  • [22] X. Sun, S. Schneider, U. Geyer, M.-A. Nico1et, W.L. Johnson, J. Mater. Res., 11, 2738 (1996).
  • [23] M. Kiene, T. Strunskus, G. Hasse, F. Faupel, Oxide Formation on Bulk Metallic Glass Zr46.75Ti8.25Cu757Ni10Be27.5, in Mat. Res. Soc. Symp. Proc. Vol. 554: Bulk Metallic Glasses, eds. W.L. Johnson, A. Inoue, C.T. Liu, MRS Warrendale 1999, p. 167ff.
  • [24] S. K. Sharma, T. Strunskus, H. Ladebusch, F. Faupel, Mater. Sci. Eng., A304-306, 747 (2001).
  • [25] U. Köster, D. Zander, Triwikantoro, Mat. Sci. Forum, 343-346, 203 (2000).
  • [26] G. Chen, H. Lou, Scripta Mater., 41, 883 (1999).
  • [27] L. Jastrow, Oxidation von Zr-Pd Gläsern, Ph.D. thesis, Dortmund 2004;
  • [28] U. Köster, D. Zander, R. Janlewing, Mater. Sci. Forum, 386-388, 89 (2002).
  • [29] L. Jastrow, M. Meuris, U. Köster, N. Froumin, D. Eliezer, Mater. Sci. Forum, 386-388, 627 (2002).
  • [30] H.J. Grabke, Mater. Sci. Forum, 251-254, 149 (1997).
  • [31] M.W. Brumm, H.J. Grabke, B. Wagemann, Corr. Sci., 36, 37 (1994).
  • [32] A. Fiegna, P. Weisgerber, J. Elecrochem. Sci., 115, 369 (1968).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS4-0010-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.