PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of energy-based multiaxial fatigue failure criteria.

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Przegląd energetycznych kryteriów wieloosiowego zniszczenia zmęczeniowego.
Języki publikacji
EN
Abstrakty
EN
The paper contains a review of energy-based multiaxial fatigue failure criteria for cyclic and random loading. The criteria for cyclic loading have been devided into three groups, depending on the kind of strain energy density per cycle which is assumed as a damage parameter. They are: a) criteria based on elastic strain energy for high-cycle fatigue, b) criteria based on plastic strain energy for low-cycle fatigue, and c) criteria based on the sum of plastic and elastic strain energies for both low- and high-cycle fatigue. The criterion for random loading is based on the new definition of energy parameter which distinguishes plus and minus signs in history of specific work of stress on strain along chosen directions in the critical fracture plane. The criteria which take into account strain energy density in the critical plane. The criteria which take into account strain energy density in the critical plane dominate in the energy description of multiaxial fatigue. Parameters dependent on loading and factors dependent on a kind of material and influencing selection of the critical plane have been given. The author presented the mathematical models of the criteria and next distinguished those including influence of mean stresses and stress gradients as well as proportional and non-proportional loading. It has been emphasised that the generalized criterion of maximum shear and normal strain energy density in the critical plane seems to be the most efficient in practise and it should be developed and verified in future.
PL
Praca zawiera przegląd energetycznych kryteriów wieloosiowego zniszczenia zmęczeniowego w warunkach cyklicznego i losowego obciążenia. Kryteria odnoszące się do cyklicznego obiążenia podzielono na trzy grupy, zależnie od rodzaju gęstości energii odkształcenia na cykl, którą przejmuje się jako parametr uszkodzenia. Są to : a) kryteria oparte na energii sprężystej odkształcenia dla zmęczenia wysokocyklowego, b) kryteria oparte na energii plastycznej odkształcenia dla zmęczenia niskocyklowego oraz c) kryteria oparte na sumie energii sprężystej i plastycznej dla zmęczenia wysoko- i niskocyklowego. Kryterium dotyczące losowego obciążenia jest oparte na nowej definicji parametru energetycznego, który odróżnia dodatnie i ujemne znaki w historii pracy właściwej naprężenia na odkształceniu w wybranych kierunkach krytycznej płaszczyzny złomu. Kryteria, które uwzględniają gęstość energii odkształcenia w płaszczyźnie krytycznej dominują w energetycznym opisie zmęczenia wieloosiowego. Podano parametry zależne od obciążeń oraz czynniki zależne od rodzaju materiału, decydujące o wyborze płaszczyzny krytycznej. Omówiono modele matematyczne kryteriów, a następnie wyróżniono te, które uzwględniają wpływ naprężeń średnich i gradientów naprężeń, oraz obciążenia proporcjonalne i nieproporcjonalne. Zwrócono uwagę, że najbliższe potrzebom obliczeń inżynierskich jest uogólnione kryterium gęstości energii maksymalnego odkształcenia normalnego i stycznego w płaszczyźnie krytycznej i należy je nadal rozwijać i weryfikować.
Rocznik
Strony
71--101
Opis fizyczny
Twórcy
autor
  • Technical University of Opole, Department of Mechanics and Machine Design, ul. Mikołajczyka 5, 45-271 Opole, Poland
  • Technical University of Opole, Department of Mechanics and Machine Design, ul. Mikołajczyka 5, 45-271 Opole, Poland, emac@po.opole.pl
Bibliografia
  • [1] Garud Y.S.: Multiaxial Fatigue: a Survey of the State of the Art, Journal of Testing and Evaluation, 1981, Vol. 9, No. 3, pp. 165-178.
  • [2] Ellyin F., Valaire B.: Development of Fatigue Failure Theories for Multiaxial High Strain Conditions. Solid Mechanics Archives, 1985, Vol.10, pp. 45-85.
  • [3] Multiaxial Fatigue. K.J. Miller and M.W. Brown (Eds.), ASTM STP 853, American Society for Testing and Materials, West Conshohcken, PA, 1985.
  • [4] Biaxial and Multiaxial Fatigue. M.W. Brown and K.J. Miller (Eds.), EGF Publication 3, Mechanical Engineering Publications, London, 1989.
  • [5] Fatigue under Biaxial and Multiaxial Loading. K.J. Kussmaul, D.L. McDiarmid and D.F. Socie (Eds.), ESIS Publication 10, London 1991.
  • [6] Multiaxial Fatigue and Deformation Testing Techniques. S. Kallui and P.J. Bonacuse (Eds.). ASTM STP 1280, American Society for Testing and Materials, West Conshohocken, PA, 1993.
  • [7] Advances in Multiaxial Fatigue. D.L. McDowell and R. Ellis (Eds.). ASTM STP 1191, American Society for Testing and Materials, West Conshohocken, PA, 1993.
  • [8] Proceedings of the Fifth International Conference on Biaxial/Multiaxial Fatigue and Fracture. E. Macha and Z. Mróz (Eds.). Technical University of Opole, Poland, 1997.
  • [9] Socie D.F., Marquis G.B.: Multiaxial Fatigue. Society of Automotive Engineers, Warrendale, PA, 2000.
  • [10] Andrews R.M., Brown M.W.: Elevated Temperature Out-of-phase Fatigue Behaviour of a Stainless Steel, in; Biaxial and Multiaxial Fatigue EGF (ESIS) Publication 3, M.W. Brown and K.J. Miller (Eds.), MEP, London, pp. 641-658.
  • [11] Curioni S., Freddi A.: Energy-Based Torsional Low-Cycle Fatigue Analysis, Fatigue under Biaxial and Multiaxial Loading. ESIS Publication 10, K.F. Kussmaul, D.L. McDiarmid and D.F. Socie (Eds.), MEP, London 1991, pp.23-33.
  • [12] Ellyin F.: A Criterion for Fatigue under Multiaxial States of Stress. Mechanics Research Communications, 1, 4, 1974, pp. 219-224.
  • [13] Leis B.N.: An Energy-Based Fatigue and Creep-Fatigue Damage Parameter. Trans. ASME JPVT, 99, 1977, pp. 524-533.
  • [14] Ellyin F.: Cyclic Strain Energy as a Criterion for Multiaxial Fatigue Failure, in: Biaxial and Multiaxial Fatigue. EGF (ESIS) Publication 3, K.J. Miller and M.W. Brown (Eds.), MEP, London 1989, pp. 571-583.
  • [15] Ellyin F., Gołoś K.: Multiaxial Fatigue Damage Criterion. Trans.ASME JEMT, 110, 1988, pp.63-68.
  • [16] Garud Y.S.: A New Approach to the Evaluation of Fatigue under Multiaxial Loadings. Trans. ASME JEMT 103, 1981, pp. 113-125.
  • [17] Glinka G., Shen G. Plumtree A.: A Multiaxial Fatigue Strain Energy Density Parameter Related to the Critical Fracture Plane. Fatigue Fract. Engng. Mater. Struct. 18(1), 1995, pp. 37-64.
  • [18] Gołoś K.: An Energy Based Multiaxial Fatigue Criterion. Engineering Transactions 36.1, Polish Academy of Sciences, 1988, pp. 55-63.
  • [19] Gołoś K., Osiński Z.: Multiaxial Fatigue Criterion under Proportional Loading Including Mean Strain Effect. Fourth Int. Conf. on Biaxial/Multiaxial Fatigue, St Germain en Laye (France), May 31 – June 3, 1994, Vol. II, pp. 303-315.
  • [20] Lefebvre D., Neale K.V., Ellyin F.: A Criterion for Low-Cycle Fatigue Failure under Biaxial States of Stress. Trans. ASME JEMT, 1988, pp. 103, 1-6.
  • [21] Liu K.C.: A Method Based on Virtual Strain-Energy Parameters for Multiaxial Fatigue Life Prediction, Advances in Multiaxial Fatigue. ASTM STP 1191, D.L. McDowell and R. Ellis (Eds.), American Society for Testing and Materials, Philadelphia, 1993, pp. 67-84.
  • [22] Macha E.: Mathematical Models of Fatigue Life of the Materials under Random Complex Stress. Scientific Papers of Inst, of Materials Science and Tech. Mechanics, Technical University of Wrocław, No.41, Series: Monographs No. 13, Wrocław 1979 (in Polish).
  • [23] Nitta A., Ogata T., Kuwabara: Fracture Mechanisms and Life Assessment under High-Strain Biaxial Cyclic Loading of Type 304 Stainless Steel. Fatigue Fract. Engng. Mater. Struct. 12(2), 1989, pp. 77-92.
  • [24] Macha E., Sonsino C.M.: Energy Criteria of Multiaxial Fatigue Failure. Fatigue Fract. Engng. Mater. Struct., Vol. 22, 1999, pp. 1053-1070.
  • [25] Rolovic R., Tipton S.M.: An Energy Based Critical Plane Approach to Multiaxial Fatigue Analysis. Fatigue and Fracture Mechanics: Twenty–Ninth Volume. T.L. Panontin and S.D. Shepard (Eds.), ASTM STP 1332, American Society for Testing and Materials, West Conshohocken, PA, 1999, pp. 599-613.
  • [26] Chen X., Xu S., Huang D.: A Critical Plane – Strain Energy Density Criterion for Multiaxial Low-Cycle Fatigue Life under Non-proportional Loading. Fatigue Fract. Engng. Mater. Struct., Vol.22, 1999, pp. 679-686.
  • [27] Pan W.F., Hung C.Y., Chen L.L.: Fatigue Life Estimation under Multiaxial Loadings. Int. J. Fatigue, Vol.21, 1999, pp. 3-10.
  • [28] Itoh T., Sakane M., Ohnami M.: Proc.Conf. on Materials and Mechanics, No. 917–71, Vol. B, Japan Society of Mechanical Engineers, 1991, pp. 425-427.
  • [29] Varvani-Farahani A., Topper T.H.: A New Energy-Critical Plane Parameter for Fatigue Life Assessment of Various Metallic Materials Subjected to In-Phase Multiaxial Conditions, Int.J. Fatigue , Vol.22, 2000, pp. 295-305.
  • [30] Park J., Nelson D.: Evaluation of an energy-based approach and a critical plane approach for predicting constant amplitude multiaxial fatigue life, Int. J. Fatigue, Vol. 22, 2000, pp. 23-39.
  • [31] Findley W.N.: Combined Stress Fatigue Strength of 78S-T61 Aluminium Alloy with Superimposed Mean Stresses and Corrections for Yielding. NACA-TN-2924, Washington, 1953.
  • [32] Rotvel F.: Biaxial Fatigue Tests with Zero Mean Stresses Using Tubular Specimens, Int. J. Mech. Sci., 12(7), 1970, pp.597-613.
  • [33] Sines G.: Failure of Materials under Combined Repeated Stresses with Superimposed Static Stresses. NACA-TN-3495, Washington, 1995.
  • [34] Majors H., Mills D.D., McGregor C.W.: Fatigue under Combined Pulsating Stresses, J. Appl. Mech., 1949, pp. 269-276.
  • [35] Marin J.: Interpretation of Fatigue Strengths for Combined Stresses. Proc. Int. Conf. on Fatigue of Metals, Inst. Mech. Eng., London 1956, pp. 184-194.
  • [36] Palin-Luc T., Lasserre S.: High Cycle Multiaxial Fatigue Energetic Criterion Taking into Account the Volumic Distribution of Stresses. Proc, 5th Int. Conf. on Biaxial/Multiaxial Fatigue and Fracture, E. Macha and Z. Mróz (Eds.), TU Opole, Poland, 1997 Vol. I, pp. 63-79.
  • [37] Chen X., Gao A., Abel A., Wu S.: Evaluation of Low Cycle Fatigue under Nonproportional Loading. Fourth Int. Conf. on Biaxial/Multiaxial Fatigue, St Germain en Laye (France), May 31–June 3, 1994, Vol. I, pp. 283-292.
  • [38] Tipton S.M., Fash J.W.: Multiaxial Fatigue Life Predictions of the SAE Specimen Using Strain Based Approaches, Multiaxial Fatigue: Analysis and Experiments, AE-14, G.E. Leese and D. Socie (Eds.), Society of Automative Engineers, Inc. Warrendale, USA, 1989, pp. 67-80.
  • [39] Shukayev S.N.: Biaxial Low Cycle Fatigue of Titanium Alloys and 08X18H10T Stainless Steel. Fatigue'96, Proc. Sixth Int. Fatigue Congress, Berlin 1996, Vol. II, pp. 977-982.
  • [40] Shukayev S.N.: Criteria for Limiting Condition of Metal Alloys under Biaxial Low-Cycle Fatigue. Proc. 5th Int. Conf. on Biaxial/Multiaxial Fatigue and Fracture, E. Macha and Z. Mróz (Eds.), TU Opole, Poland, 1997 Vol. I, pp. 207-220.
  • [41] Kazantsev A.G., Makhutov N.A.: Low-Cycle Fatigue of Anisotropic Steel under Nonproportional Loading. Proc. 5th Int. Conf. on Biaxial/Multiaxial Fatigue and Fracture, E. Macha and Z. Mróz (Eds.), TU Opole, Poland, 1997, Vol. I, pp. 125-139.
  • [42] Ellyin F., Kujawski D.: A Multiaxial Fatigue Criterion Including Mean-Stress Effect, Advances in Multiaxial Fatigue. ASTM STP 1191, D.L. McDowell and R. Ellis (Eds.), American Society for Testing and Materials, Philadelphia, 1993, pp. 55-66.
  • [43] Smith K.N., Watson P., Hopper T.H.: A Stress-Strain Function for the Fatigue of Metals. Journal of Materials, 5(4), 1970, pp. 767-776.
  • [44] Ellyin F., Gołoś K., Xia Z.: In-phase and Out-of-phase Multiaxial Fatigue. Trans. ASME JEMT, 113(1), 1991, pp. 112-118.
  • [45] Ellyin F., Xia Z.: A General Fatigue Theory and its Application to Out-of-Phase Cyclic Loading. Trans. ASME JEMT, 115(4), 1993, pp. 411-416.
  • [46] Gołoś K.: Multiaxial Fatigue Criterion with Mean Stress Effect Int. J.Pres. Ves. and Piping 69, 1996, pp. 263-266.
  • [47] Gołoś K.M., Eshtewi S.H.: Multiaxial Fatigue and Mean Stress Effect of St5 Medium Carbon Steel. Proc., 5th Int. Conf. on Biaxial/Multiaxial Fatigue and Fracture, E. Macha and Z. Mróz (Eds.), TU Opole, Poland, 1997. Vol. I, pp. 25-34.
  • [48] Socie D.F.: Multiaxial Fatigue Damage Models. Trans. ASME JEMT, 109, 1987, pp. 293-298.
  • [49] Hoffman H., Seeger T.: Stress-Strain Analysis and Life Predictions of a Notched Shaft under Multiaxial Loading, Multiaxial Fatigue: Analysis and Experiments. AE-14, G.E. Leese and D. Socie (Eds.), Society of Automotive Engineers, Ins. Warrendale, USA, 1989, pp. 81-99.
  • [50] Chu C.C., Conle F.A., Bonnen J.J.: Multiaxial Stress-Strain Modelling and Fatigue Life Prediction of SAE Axle Shafts, Advances in Multiaxial Fatigue. ASTM STP 1191, D.L. McDowell and R. Ellis (Eds.), American Society for Testing and Materials, Philadelphia, 1993, pp. 37-54.
  • [51] Glinka G., Wang G., Plumtree A.: Mean Stress Effects in Multiaxial Fatigue, Fatigue Fract. Engng. Mater. Struct. 18 (7/8), 1995, pp. 755-764.
  • [52] Liebster T.D., Glinka G.: Multiaxial Fatigue Life Prediction Methods for Engineering Components, in: Reliability Assessment of Cyclically Loaded Engineering Structures. R.A. Smith (Ed.), Kluver Acad. Publ., 1997, pp.101-136.
  • [53] Łagoda T., Macha E., Będkowski W.: A Critical Plane Approach Based on Energy Concepts: Application to Biaxial Random Tension-Compression High-Cycle Fatigue Regime. Int. J. Fatigue, Vol.21, 1999, pp. 431-443.
  • [54] Łagoda T., Macha E.: Multiaxial Random Fatigue of Machine Elements and Structures. Part III: Generalization of the Energy Criteria of Multiaxial Cyclic Fatigue to Random Loading, Studies and Monographs 104, Technical University of Opole, 1998 (in Polish).
  • [55] Macha E.: Simulation Investigations of the Positions of Fatigue Fracture Plane in Materials with Biaxial Loads. Mat.-wiss.u.Werkstofftech., 1989, 20, Heft 4/89, pp. 132-136, Heft 5/89, pp. 159-164.
  • [56] Łagoda T., Macha E., Dragon A., Petit J.: Influence of Correlation between Stresses on Calculated Fatigue Life on Machine Elements. Int.J.Fatigue, 18, 8, 1996, pp. 547-555.
  • [57] Goodman J.: Mechanics Applied to Engineering. Longmans Green and Co., 9th Edition, New York 1954.
  • [58] Marin J.: Interpretation of Fatigue Strength for Combined Stresses. Proc. Int. Conf. on Fatigue of Metals, Inst. Mech. Eng., London, 1956. pp. 184-194.
  • [59] Troost A., El. Magd: General Formulation of Fatigue Strength Amplitude in the Representation of Haigh. Materialprufung 17(2), 1975, pp. 47-49 (in German).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS4-0003-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.