PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation ob three-dimensional viscous flow in an isolated axial rotor.

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Rozwiązanie numeryczne dla trójwymiarowego przepływu lepkiego w izolowanym wirniku osiowym.
Języki publikacji
EN
Abstrakty
EN
A finite element based Navier-Stokes solver is applied to investigate the three-dimensional viscous flow in a low speed isolated axial rotor with tip clearance at design condition. A higher order anisotropic eddy viscosity model is used for closure, with wall function treatment able to simulate stationery and moving boundaries. The presented comparisons with experimental data include three-dimensional flow structure behind the rotor as well as the tip leakage flow behaviour developing through the rotor. It is shown that the code predicts well the flow structure observed in the experiments. A critical discussion of predicting limits as also carried out in order to address possible improvements.
PL
Rozwiązanie Naviera-Stockesa, oparte na metodzie elementów skończonych, zastosowano do badań trójwymiarowego przepływu lepkiego w wolnoobrotowym izolowanym wirniku osiowym ze szczeliną między szczytem łopatek i obudową, w warunkach projektowych. Zastosowano anizotropowy wirowy model lepkościowy wyższego rzędu, w którym funkcja opisująca ograniczenia ścian może reprezentować zarówno ograniczenia stacjonarne, jak i ruchome. Przedstawione w pracy porównania z danymi doświadczalnymi obejmują zarówno trójwymiarową strukturę przepływu poza wirnikiem, jak i powstającego w wirniku przepływu w wyniku upływności przez szczlinę szczytową. Jak pokazano, zastosowane oprogramowanie pozwala dobrze przewidziec strukturę przepływu obserwowaną eksperymentalnie. Przeprowadzono także krytyczną dyskusję granicznych możliwości takiego przewidywania, w celu wskazania potrzebnych ulepszeń metody.
Rocznik
Strony
369--392
Opis fizyczny
Twórcy
  • University of Rome "La Sapienza", Dipartimento de Meccanica e Aeronautica, Via Eudossiana, 18-100184 Roma, Italia
  • University of Rome "La Sapienza", Dipartimento de Meccanica e Aeronautica, Via Eudossiana, 18-100184 Roma, Italia
Bibliografia
  • [1] Basson A., Kunz R. F., Lakshminarayana B.: (1993); Grid generation for three-dimensional turbomachinery geometries including tip clearance. J. Propulsion and Power, pp 59-66.
  • [2] Basson A., Lakshminarayana B.: (1995); Numerical simulation of tip clearance effects in turbomachinery. J. Turbomachinery, pp. 348-359.
  • [3] Borello D., Corsini A., Rispoli F.: (1997a); Prediction of Francis turbine runner performance using a 3-D finite element technique with unassembled stiffness matrix treatment. 2nd European Conf. on Turbomachinery, Antwerp, pp. 389-397.
  • [4] Borello D., Corsini A., Rispoli F.: (1997b); A 3D stabilized finite element technique with compact stiffness matrix treatment. Application to internal flows. ASME Paper FEDSM97-3491.
  • [5] Brooks A.N., Hughes T.J.R.: (1982); Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comp. Meth. Appl. Mech. Eng., pp. 199-259.
  • [6] Corsini A.: (1996); Three dimensional analysis of turbulent flow behaviour inside a Francis turbine runner. Performance prediction using unassembled stiffness matrix finite element tecnique, (in Italian). Ph. D. Thesis, Universita di Roma "La Sapienza".
  • [7] Corsini A., Rispoli F., Vad J., Bencze F.: (1999); Concerted experimental and numerical studies on axial flow fan rotor aerodynamics. 3rd European Conf. on Turbomachinery, London, pp. 519-531.
  • [8] Craft T.J., Launder B.E., Suga K.: (1993); Extending the applicability of eddy viscosity models through the use of deformation invariants and non-linear elements. 5th IAHR - Refined Flow Modelling and Turbulence Measurements, Paris, pp. 125-132.
  • [9] Dawes W. N.: (1987); A numerical analysis of the three-dimensional viscous flow in a transonic compressor rotor and comparison with the experiment. J. of Turbomachinery, pp. 83-90.
  • [10] Goyal R.K., Dawes W.N.: (1993); A comparison of themeasured and predicted flow field in a modern by-pass configuration. J. of Turbomachinery, pp. 273-282.
  • [11] Hah C.: (1984); A Navier-Stokes analysis of three-dimensional turbulent flows inside turbine blade rows at design and off-design conditions. J. of Engineering for Gas Turbines and Power, pp. 421-429.
  • [12] Hansbo P., Johson C.: (1995); Streamline diffusion finite element methods for fluid flow. VKI LS 1995-02.
  • [13] Hunter I.H., Cumpsty N. A.: (1982); Casing wall boundary layer development through an isolated compressor rotor. J. of Engineering for Gas Turbines and Power, pp. 805-818.
  • [14] Inoue M., Kuroumaru M.: (1984); Three-dimensional structure and decay of vortices behind an axial flow rotating blade row. J. of Engineering for Gas Turbines and Power, pp. 561-569.
  • [15] Inoue M., Kuroumaru M.: (1989); Structure of tip clearance flow in an isolated axial compressor rotor. J. of Turbomachinery, pp. 250-256.
  • [16] Inoue M., Kuroumaru M., Iwamoto T., Ando Y.: (1991); Detection of a rotating stall precursor in isolated axial flow compressor rotors. J. of Turbomachinery, pp. 281-289.
  • [17] Lakshminarayana B., Davino R., Pouagare M.: (1982); Three-dimensional flow field in the tip region of a compressor rotor passage - part II: turbulence properties. J. of Eng. For Power, pp. 772-781.
  • [18] Launder B.E.: (1995); Advanced turbulence models for industrial applications. Turbulence and Transition Modelling - ERCOFTAC/IUTAM, pp. 193-231.
  • [19] Moyle I. N. (1989), Influence of the radial component of the total pressure gradient on tip clearance secondary flow in axial compressors, ASME Paper 89-GT-19.
  • [20] Rispoli F., Siciliani F.: (1994); Una metodologia agli elementi finiti per il calcolo di flussi secondari incompressibili in condotti di turbomacchine, (in Italian). 49° Congresso Nazionale ATI, Perugia, pp. 1795-1807.
  • [21] Saad Y., Schultz M.H.: (1986); GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear system. SIAM J. of Stat. Comput, pp. 856-869.
  • [22] Shakib F., Hughes T.J.R., Johan Z.: (1989); A multi element group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis. Comp. Meth. Appl. Mech. Eng., pp. 415-456.
  • [23] Speziale G.C., Younis B.A., Rubinstein R., Zhou Y.: (1998); On consistency conditions for rotating turbulent flows. Physics of Fluids, pp. 2108-2110.
  • [24] Storer J.A., Cumpsty N.A.: (1991); Tip leakage flow in axial compressors. J. of Turbomachinery, pp. 252-259.
  • [25] Tezduyar T.E.: (1992); Stabilized finite element formulations for incompressible flow computations. Advances in Applied Mechanics, Academic Press Inc.
  • [26] Vad J., Bencze F.: (1996); Secondary Flow in Axial Flow Fans of Non-Free Vortex Operation. 8th Int. Symp. Appl. of Laser Tech. Fluid Mech, Lisbon, V.1.
  • [27] Vad J.; (1997), Investigation on the flow field downstream of axial flow fans using Laser Doppler Anemometry, (in Hungarian). Ph.D. Thesis, Technical University of Budapest - Hungary.
  • [28] Vad J., Bencze F.: (1998a); Three-Dimensional Flow in Axial Flow Fans of Non-Free Vortex Design. Int. J. of Heat and Fluid Flow, pp. 6014-607.
  • [29] Vad J., Bencze F.: (1998b); Laser Doppler Anemometer Measurements Upstream and Downstream of an Axial Flow Rotor Cascade of Adjustable Stagger. 9th Int. Conf. on Flow Measurement (FLOMEKO), Lund, Sweden, pp. 579-584.
  • [30] Vad J. (1999), Private communication.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS4-0001-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.